library_name: transformers | |
license: mit | |
base_model: FacebookAI/xlm-roberta-large | |
tags: | |
- generated_from_trainer | |
model-index: | |
- name: xxx-ner-ghtk-ai-fluent-segmented-21-label-new-data-3090-6Obt-1 | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# xxx-ner-ghtk-ai-fluent-segmented-21-label-new-data-3090-6Obt-1 | |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2.5e-05 | |
- train_batch_size: 8 | |
- eval_batch_size: 8 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 1 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Ho | Hoảng thời gian | Háng trừu tượng | Hông tin ctt | Hụ cấp | Hứ | Iấy tờ | Iền cụ thể | Iền trừu tượng | Ã số thuế | Ã đơn | Ình thức làm việc | Ông | Ương | Ị trí | Ố công | Ố giờ | Ố điểm | Ố đơn | Ợt | Ỷ lệ | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | | |
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:----------------------------------------------------------:|:---------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:----------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:----------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | |
| No log | 1.0 | 147 | 0.5842 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.19148936170212766, 'recall': 0.14285714285714285, 'f1': 0.16363636363636364, 'number': 63} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 31} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 22} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.07079646017699115, 'recall': 0.0975609756097561, 'f1': 0.08205128205128205, 'number': 82} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 54} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 16} | {'precision': 0.6938775510204082, 'recall': 0.5551020408163265, 'f1': 0.6167800453514739, 'number': 245} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 50} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 27} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | 0.3825 | 0.2361 | 0.2920 | 0.8515 | | |
### Framework versions | |
- Transformers 4.44.2 | |
- Pytorch 2.4.1+cu121 | |
- Datasets 3.0.0 | |
- Tokenizers 0.19.1 | |