Kuongan's picture
Training completed!
3e5964c verified
metadata
library_name: transformers
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: CS221-mdeberta-v3-base-randomdrop
    results: []

CS221-mdeberta-v3-base-randomdrop

This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5440
  • F1: 0.6741
  • Roc Auc: 0.7756
  • Accuracy: 0.4071

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.5661 1.0 99 0.5434 0.0 0.5 0.1425
0.5054 2.0 198 0.4744 0.4852 0.6560 0.2621
0.4409 3.0 297 0.4436 0.5766 0.7104 0.3308
0.3975 4.0 396 0.4284 0.6071 0.7316 0.3588
0.2827 5.0 495 0.4228 0.6095 0.7296 0.3562
0.2831 6.0 594 0.4540 0.6467 0.7642 0.3715
0.1846 7.0 693 0.4519 0.6325 0.7459 0.3893
0.1752 8.0 792 0.4538 0.6426 0.7535 0.3740
0.1547 9.0 891 0.4799 0.6541 0.7642 0.3791
0.1046 10.0 990 0.4793 0.6667 0.7687 0.4020
0.1052 11.0 1089 0.5001 0.6593 0.7658 0.4046
0.0843 12.0 1188 0.5069 0.6647 0.7705 0.3893
0.0653 13.0 1287 0.5275 0.6681 0.7669 0.4097
0.0575 14.0 1386 0.5455 0.6617 0.7632 0.3944
0.0503 15.0 1485 0.5440 0.6741 0.7756 0.4071
0.0499 16.0 1584 0.5555 0.6653 0.7660 0.4097
0.0431 17.0 1683 0.5557 0.6660 0.7675 0.4020
0.0422 18.0 1782 0.5599 0.6632 0.7664 0.3944

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0