|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: microsoft/deberta-v3-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: cs221-deberta-v3-large-eng-pt |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# cs221-deberta-v3-large-eng-pt |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3691 |
|
- F1: 0.7676 |
|
- Roc Auc: 0.8216 |
|
- Accuracy: 0.6034 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| |
|
| 0.4687 | 1.0 | 173 | 0.4601 | 0.4113 | 0.6309 | 0.3103 | |
|
| 0.3504 | 2.0 | 346 | 0.3652 | 0.6879 | 0.7645 | 0.4397 | |
|
| 0.2659 | 3.0 | 519 | 0.3636 | 0.7057 | 0.7616 | 0.4397 | |
|
| 0.1696 | 4.0 | 692 | 0.3691 | 0.7676 | 0.8216 | 0.6034 | |
|
| 0.1001 | 5.0 | 865 | 0.4142 | 0.7647 | 0.8246 | 0.5172 | |
|
| 0.0699 | 6.0 | 1038 | 0.4698 | 0.7530 | 0.8034 | 0.4828 | |
|
| 0.049 | 7.0 | 1211 | 0.5140 | 0.7219 | 0.7911 | 0.5 | |
|
| 0.0253 | 8.0 | 1384 | 0.5917 | 0.7603 | 0.8191 | 0.5345 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|