Lakoc's picture
update model card README.md
92058d5
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: TED_CLM_gpt2_tedlium_additional_head
    results: []

TED_CLM_gpt2_tedlium_additional_head

This model is a fine-tuned version of Lakoc/gpt2_512h_16l_add_head8 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9139
  • Accuracy: 0.5529

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 512
  • total_eval_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20000
  • num_epochs: 15.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2945 0.62 3000 2.4760 0.4352
2.0669 1.24 6000 2.2729 0.4767
1.9754 1.86 9000 2.1827 0.4974
1.9292 2.49 12000 2.1086 0.5139
1.8983 3.11 15000 2.0666 0.5223
1.8853 3.73 18000 2.0389 0.5278
1.8708 4.35 21000 2.0216 0.5301
1.8524 4.97 24000 2.0024 0.5352
1.836 5.59 27000 1.9915 0.5365
1.8219 6.22 30000 1.9847 0.5410
1.8134 6.84 33000 1.9670 0.5408
1.8088 7.46 36000 1.9736 0.5425
1.8011 8.08 39000 1.9610 0.5426
1.7901 8.7 42000 1.9519 0.5459
1.7829 9.32 45000 1.9524 0.5463
1.7865 9.94 48000 1.9424 0.5479
1.7775 10.57 51000 1.9421 0.5480
1.7698 11.19 54000 1.9346 0.5486
1.767 11.81 57000 1.9249 0.5493
1.7578 12.43 60000 1.9262 0.5500
1.7613 13.05 63000 1.9185 0.5508
1.7591 13.67 66000 1.9191 0.5523
1.7489 14.29 69000 1.9159 0.5522
1.7506 14.92 72000 1.9139 0.5529

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.13.1
  • Tokenizers 0.13.3