File size: 46,825 Bytes
a32d0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3075
- loss:CoSENTLoss
widget:
- source_sentence: last calibrated span
  sentences:
  - 'What is a Calibration Point?

    A Calibration Point represents a specific data entry in a calibration process,
    comparing an expected reference value to an actual measured value. These points
    are fundamental in ensuring measurement accuracy and identifying deviations.


    Key Aspects of Calibration Points:

    - Calibration Report Association: Each calibration point belongs to a specific
    calibration report, linking it to a broader calibration procedure.

    - Reference Values: Theoretical or expected values used as a benchmark for measurement
    validation.

    - Measured Values: The actual recorded values during calibration, reflecting the
    instrument’s response.

    - Errors: The difference between reference and measured values, indicating possible
    measurement inaccuracies.

    Calibration points are essential for evaluating instrument performance, ensuring
    compliance with standards, and maintaining measurement reliability.'
  - 'What is Equipment?

    An Equipment represents a physical device that may be used within a measurement
    system. Equipment can be active or inactive and is classified by type, such as
    transmitters, thermometers, or other measurement-related devices.


    Key Aspects of Equipment:

    - Serial Number: A unique identifier assigned to each equipment unit for tracking
    and reference.

    - Current State: Indicates whether the equipment is currently in use (ACT) or
    inactive (INA).

    - Associated Equipment Type: Defines the category of the equipment (e.g., transmitter,
    thermometer), allowing classification and management.

    Equipment plays a critical role in measurement systems, ensuring accuracy and
    reliability in data collection and processing.'
  - 'What is an Equipment Tag?

    An Equipment Tag is a unique identifier assigned to equipment that is actively
    installed and in use within a measurement system. It differentiates between equipment
    in general (which may be in storage or inactive) and equipment that is currently
    operational in a system.


    Key Aspects of Equipment Tags:

    - Equipment-Tag: A distinct label or identifier that uniquely marks the equipment
    in operation.

    - Equipment ID: Links the tag to the corresponding equipment unit.

    - Belonging Measurement System: Specifies which measurement system the tagged
    equipment is part of.

    - Equipment Type Name: Classifies the equipment (e.g., transmitter, thermometer),
    aiding in organization and system integration.

    The Equipment Tag is essential for tracking and managing operational equipment
    within a measurement system, ensuring proper identification, monitoring, and maintenance.'
- source_sentence: transmitter calibration record
  sentences:
  - 'What are historical report values?

    These represent the recorded data points within flow computer reports. Unlike
    the report index, which serves as a reference to locate reports, these values
    contain the actual measurements and calculated data stored in the historical records.


    Flow computer reports store two types of data values:


    - **Hourly data values**: Contain measured or calculated values (e.g., operational
    minutes, alarms set, etc.) recorded on an hourly basis.

    - **Daily data values**: Contain measured or calculated values (e.g., operational
    minutes, alarms set, etc.) recorded on a daily basis.

    Each value is directly linked to its respective report index, ensuring traceability
    to the original flow computer record. These values maintain their raw integrity,
    providing a reliable source for analysis and validation.'
  - 'What is a Flow Computer Firmware?

    A flow computer firmware is a software component that defines the functionality
    and behavior of a flow computer.


    🔹 Key Characteristics:


    Each firmware version (e.g., F407, FB107, EMED-010) is linked to a specific flow
    computer model.

    Firmware versions can have a status indicating whether they are active or inactive.

    They determine how the flow computer processes measurements, calculations, and
    system operations.

    📌 Database Tip: When querying firmware information, ensure the firmware version
    is matched with the correct flow computer type for accurate results.'
  - 'What is an Uncertainty Curve Point?

    An Uncertainty Curve Point represents a data point used to construct the uncertainty
    curve of a measurement system. These curves help analyze how measurement uncertainty
    behaves under different flow rate conditions, ensuring accuracy and reliability
    in uncertainty assessments.


    Key Aspects of an Uncertainty Curve Point:

    - Uncertainty File ID: Links the point to the specific uncertainty dataset, ensuring
    traceability.

    Equipment Tag ID: Identifies the equipment associated with the uncertainty measurement,
    crucial for system validation.

    - Uncertainty Points: Represent uncertainty values recorded at specific conditions,
    forming part of the overall uncertainty curve.

    - Flow Rate Points: Corresponding flow rate values at which the uncertainty was
    measured, essential for evaluating performance under varying operational conditions.

    These points are fundamental for generating uncertainty curves, which are used
    in calibration, validation, and compliance assessments to ensure measurement reliability
    in industrial processes.'
- source_sentence: measurement systems
  sentences:
  - 'What is a Calibration Record?

    A Calibration Record documents the calibration process of a specific equipment
    tag, ensuring that its measurements remain accurate and reliable. Calibration
    is a critical process in maintaining measurement precision and compliance with
    standards.


    Key Aspects of a Calibration Record:

    - Calibration Date: The exact date when the calibration was performed, crucial
    for tracking maintenance schedules.

    - Certification Number: A unique identifier for the calibration certificate, providing
    traceability and verification of compliance.

    - Range Values: The minimum and maximum measurement values covered during the
    calibration process.

    - Calibration Status: Indicates whether the calibration was approved or saved
    for further review.

    - Associated Units: Specifies the measurement units used in calibration (e.g.,
    °C, psi).

    - Associated Equipment Tag ID: Links the calibration record to a specific equipment
    tag, ensuring traceability of measurement instruments.

    Calibration records play a fundamental role in quality assurance, helping maintain
    measurement integrity and regulatory compliance.'
  - 'What is a flow computer?

    A flow computer is a device used in measurement engineering. It collects analog
    and digital data from flow meters and other sensors.


    Key features of a flow computer:

    - It has a unique name, firmware version, and manufacturer information.

    - It is designed to record and process data such as temperature, pressure, and
    fluid volume (for gases or oils).'
  - 'What is a Measured Magnitude Value?

    A Measured Magnitude Value represents a recorded physical measurement of a variable
    within a monitored fluid. These values are essential for tracking system performance,
    analyzing trends, and ensuring accurate monitoring of fluid properties.


    Key Aspects of a Measured Magnitude Value:

    - Measurement Date: The timestamp indicating when the measurement was recorded.

    - Measured Value: The actual numeric result of the recorded physical magnitude.

    - Measurement System Association: Links the measured value to a specific measurement
    system responsible for capturing the data.

    - Variable Association: Identifies the specific variable (e.g., temperature, pressure,
    flow rate) corresponding to the recorded value.

    Measured magnitude values are crucial for real-time monitoring, historical analysis,
    and calibration processes within measurement systems.'
- source_sentence: measurement system tag
  sentences:
  - 'What is a Meter Stream?

    A Meter Stream represents a measurement system configured within a flow computer.
    It serves as the interface between the physical measurement system and the computational
    processes that record and analyze flow data.


    Key Aspects of a Meter Stream:

    - Status: Indicates whether the meter stream is active or inactive.

    - Measurement System Association: Links the meter stream to a specific measurement
    system, ensuring that the data collected corresponds to a defined physical setup.

    - Flow Computer Association: Identifies the flow computer responsible for managing
    and recording the measurement system''s data.

    Why is a Meter Stream Important?

    A **meter stream** is a critical component in flow measurement, as it ensures
    that the measurement system is correctly integrated into the flow computer for
    accurate monitoring and reporting. Since each flow computer can handle multiple
    meter streams, proper configuration is essential for maintaining data integrity
    and traceability.'
  - 'What is an Equipment Tag?

    An Equipment Tag is a unique identifier assigned to equipment that is actively
    installed and in use within a measurement system. It differentiates between equipment
    in general (which may be in storage or inactive) and equipment that is currently
    operational in a system.


    Key Aspects of Equipment Tags:

    - Equipment-Tag: A distinct label or identifier that uniquely marks the equipment
    in operation.

    - Equipment ID: Links the tag to the corresponding equipment unit.

    - Belonging Measurement System: Specifies which measurement system the tagged
    equipment is part of.

    - Equipment Type Name: Classifies the equipment (e.g., transmitter, thermometer),
    aiding in organization and system integration.

    The Equipment Tag is essential for tracking and managing operational equipment
    within a measurement system, ensuring proper identification, monitoring, and maintenance.'
  - 'What is a measurement system?

    **Measurement systems** are essential components in industrial measurement and
    processing. They are identified by a unique **Tag** and are associated with a
    specific **installation** and **fluid type**. These systems utilize different
    **measurement technologies**, including **differential (DIF)** and **linear (LIN)**,
    depending on the application. Measurement systems can be classified based on their
    **application type**, such as **fiscal** or **custody transfer**.  '
- source_sentence: uncertainty points
  sentences:
  - 'What is a Calibration Point?

    A Calibration Point represents a specific data entry in a calibration process,
    comparing an expected reference value to an actual measured value. These points
    are fundamental in ensuring measurement accuracy and identifying deviations.


    Key Aspects of Calibration Points:

    - Calibration Report Association: Each calibration point belongs to a specific
    calibration report, linking it to a broader calibration procedure.

    - Reference Values: Theoretical or expected values used as a benchmark for measurement
    validation.

    - Measured Values: The actual recorded values during calibration, reflecting the
    instrument’s response.

    - Errors: The difference between reference and measured values, indicating possible
    measurement inaccuracies.

    Calibration points are essential for evaluating instrument performance, ensuring
    compliance with standards, and maintaining measurement reliability.'
  - 'What is a Meter Stream?

    A Meter Stream represents a measurement system configured within a flow computer.
    It serves as the interface between the physical measurement system and the computational
    processes that record and analyze flow data.


    Key Aspects of a Meter Stream:

    - Status: Indicates whether the meter stream is active or inactive.

    - Measurement System Association: Links the meter stream to a specific measurement
    system, ensuring that the data collected corresponds to a defined physical setup.

    - Flow Computer Association: Identifies the flow computer responsible for managing
    and recording the measurement system''s data.

    Why is a Meter Stream Important?

    A **meter stream** is a critical component in flow measurement, as it ensures
    that the measurement system is correctly integrated into the flow computer for
    accurate monitoring and reporting. Since each flow computer can handle multiple
    meter streams, proper configuration is essential for maintaining data integrity
    and traceability.'
  - 'What is a Fluid?

    A Fluid is the substance measured within a measurement system. It can be a gas
    or liquid, such as hydrocarbons, water, or other industrial fluids. Proper classification
    of fluids is essential for ensuring measurement accuracy, regulatory compliance,
    and operational efficiency. By identifying fluids correctly, the system applies
    the appropriate measurement techniques, processing methods, and reporting standards.'
datasets:
- Lauther/measuring-embeddings-v4
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---

# SentenceTransformer

This is a [sentence-transformers](https://www.SBERT.net) model trained on the [measuring-embeddings-v4](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [measuring-embeddings-v4](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Lauther/measuring-embeddings-v4.3")
# Run inference
sentences = [
    'uncertainty points',
    'What is a Fluid?\nA Fluid is the substance measured within a measurement system. It can be a gas or liquid, such as hydrocarbons, water, or other industrial fluids. Proper classification of fluids is essential for ensuring measurement accuracy, regulatory compliance, and operational efficiency. By identifying fluids correctly, the system applies the appropriate measurement techniques, processing methods, and reporting standards.',
    'What is a Calibration Point?\nA Calibration Point represents a specific data entry in a calibration process, comparing an expected reference value to an actual measured value. These points are fundamental in ensuring measurement accuracy and identifying deviations.\n\nKey Aspects of Calibration Points:\n- Calibration Report Association: Each calibration point belongs to a specific calibration report, linking it to a broader calibration procedure.\n- Reference Values: Theoretical or expected values used as a benchmark for measurement validation.\n- Measured Values: The actual recorded values during calibration, reflecting the instrument’s response.\n- Errors: The difference between reference and measured values, indicating possible measurement inaccuracies.\nCalibration points are essential for evaluating instrument performance, ensuring compliance with standards, and maintaining measurement reliability.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### measuring-embeddings-v4

* Dataset: [measuring-embeddings-v4](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4) at [1e3ca2c](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4/tree/1e3ca2c224ad58d1cc57b797997231e22154e471)
* Size: 3,075 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                            | score                                                            |
  |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------|
  | type    | string                                                                           | string                                                                               | float                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 7.55 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 80 tokens</li><li>mean: 180.22 tokens</li><li>max: 406 tokens</li></ul> | <ul><li>min: 0.07</li><li>mean: 0.21</li><li>max: 0.95</li></ul> |
* Samples:
  | sentence1                                   | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | score            |
  |:--------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>last calibrated span</code>           | <code>What are historical report values?<br>These represent the recorded data points within flow computer reports. Unlike the report index, which serves as a reference to locate reports, these values contain the actual measurements and calculated data stored in the historical records.<br><br>Flow computer reports store two types of data values:<br><br>- **Hourly data values**: Contain measured or calculated values (e.g., operational minutes, alarms set, etc.) recorded on an hourly basis.<br>- **Daily data values**: Contain measured or calculated values (e.g., operational minutes, alarms set, etc.) recorded on a daily basis.<br>Each value is directly linked to its respective report index, ensuring traceability to the original flow computer record. These values maintain their raw integrity, providing a reliable source for analysis and validation.</code>                                                                                                                                | <code>0.1</code> |
  | <code>flow computer configuration</code>    | <code>What is a Measurement Type?<br>Measurement types define the classification of measurements used within a system based on their purpose and regulatory requirements. These types include **fiscal**, **appropriation**, **operational**, and **custody** measurements.  <br><br>- **Fiscal measurements** are used for tax and regulatory reporting, ensuring accurate financial transactions based on measured quantities.  <br>- **Appropriation measurements** track resource allocation and ownership distribution among stakeholders.  <br>- **Operational measurements** support real-time monitoring and process optimization within industrial operations.  <br>- **Custody measurements** are essential for legal and contractual transactions, ensuring precise handover of fluids between parties.  <br><br>These classifications play a crucial role in compliance, financial accuracy, and operational efficiency across industries such as oil and gas, water management, and energy distribution.  </code> | <code>0.1</code> |
  | <code>uncertainty certificate number</code> | <code>What is an Uncertainty Composition?<br>An Uncertainty Composition represents a specific factor that contributes to the overall uncertainty of a measurement system. These components are essential for evaluating the accuracy and reliability of measurements by identifying and quantifying the sources of uncertainty.<br><br>Key Aspects of an Uncertainty Component:<br>- Component Name: Defines the uncertainty factor (e.g., diameter, density, variance, covariance) influencing the measurement system.<br>- Value of Composition: Quantifies the component’s contribution to the total uncertainty, helping to analyze which factors have the greatest impact.<br>- Uncertainty File ID: Links the component to a specific uncertainty dataset for traceability and validation.<br>Understanding these components is critical for uncertainty analysis, ensuring compliance with industry standards and improving measurement precision.</code>                                                               | <code>0.1</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Evaluation Dataset

#### measuring-embeddings-v4

* Dataset: [measuring-embeddings-v4](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4) at [1e3ca2c](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4/tree/1e3ca2c224ad58d1cc57b797997231e22154e471)
* Size: 659 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 659 samples:
  |         | sentence1                                                                        | sentence2                                                                            | score                                                          |
  |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                           | string                                                                               | float                                                          |
  | details | <ul><li>min: 3 tokens</li><li>mean: 7.63 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 80 tokens</li><li>mean: 186.36 tokens</li><li>max: 406 tokens</li></ul> | <ul><li>min: 0.07</li><li>mean: 0.2</li><li>max: 0.9</li></ul> |
* Samples:
  | sentence1                                            | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | score             |
  |:-----------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
  | <code>measurement system details</code>              | <code>What is an Uncertainty Composition?<br>An Uncertainty Composition represents a specific factor that contributes to the overall uncertainty of a measurement system. These components are essential for evaluating the accuracy and reliability of measurements by identifying and quantifying the sources of uncertainty.<br><br>Key Aspects of an Uncertainty Component:<br>- Component Name: Defines the uncertainty factor (e.g., diameter, density, variance, covariance) influencing the measurement system.<br>- Value of Composition: Quantifies the component’s contribution to the total uncertainty, helping to analyze which factors have the greatest impact.<br>- Uncertainty File ID: Links the component to a specific uncertainty dataset for traceability and validation.<br>Understanding these components is critical for uncertainty analysis, ensuring compliance with industry standards and improving measurement precision.</code>                                                                                                              | <code>0.15</code> |
  | <code>measurement system tag EMED-3102-02-010</code> | <code>What is a report index or historic index?<br>Indexes represent the recorded reports generated by flow computers, classified into two types: <br>- **Hourly reports Index**: Store data for hourly events.<br>- **Daily reports Index**: Strore data for daily events.<br><br>These reports, also referred to as historical data or flow computer historical records, contain raw, first-hand measurements directly collected from the flow computer. The data has not been processed or used in any calculations, preserving its original state for analysis or validation.<br><br>The index is essential for locating specific values within the report.</code>                                                                                                                                                                                                                                                                                                                                                                                                        | <code>0.24</code> |
  | <code>static pressure</code>                         | <code>What is a Meter Stream?<br>A Meter Stream represents a measurement system configured within a flow computer. It serves as the interface between the physical measurement system and the computational processes that record and analyze flow data.<br><br>Key Aspects of a Meter Stream:<br>- Status: Indicates whether the meter stream is active or inactive.<br>- Measurement System Association: Links the meter stream to a specific measurement system, ensuring that the data collected corresponds to a defined physical setup.<br>- Flow Computer Association: Identifies the flow computer responsible for managing and recording the measurement system's data.<br>Why is a Meter Stream Important?<br>A **meter stream** is a critical component in flow measurement, as it ensures that the measurement system is correctly integrated into the flow computer for accurate monitoring and reporting. Since each flow computer can handle multiple meter streams, proper configuration is essential for maintaining data integrity and traceability.</code> | <code>0.1</code>  |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `gradient_accumulation_steps`: 4
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 4
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.8322 | 160  | 3.0564        | -               |
| 0.8843 | 170  | 2.2963        | -               |
| 0.9363 | 180  | 1.8767        | -               |
| 0.9883 | 190  | 2.8634        | -               |
| 1.0416 | 200  | 2.5195        | -               |
| 1.0936 | 210  | 2.4094        | -               |
| 1.1456 | 220  | 1.5141        | -               |
| 1.1977 | 230  | 2.1366        | -               |
| 1.2497 | 240  | 1.5389        | -               |
| 1.3017 | 250  | 3.8265        | -               |
| 1.3537 | 260  | 1.9989        | -               |
| 1.4057 | 270  | 2.6037        | -               |
| 1.4577 | 280  | 3.898         | -               |
| 1.5098 | 290  | 2.9363        | -               |
| 1.5618 | 300  | 3.3853        | 0.5155          |
| 1.6138 | 310  | 2.2995        | -               |
| 1.6658 | 320  | 1.3945        | -               |
| 1.7178 | 330  | 3.8312        | -               |
| 1.7698 | 340  | 2.626         | -               |
| 1.8218 | 350  | 1.5451        | -               |
| 1.8739 | 360  | 1.1062        | -               |
| 1.9259 | 370  | 2.6593        | -               |
| 1.9779 | 380  | 1.773         | -               |
| 2.0260 | 390  | 1.3937        | -               |
| 2.0780 | 400  | 2.2228        | -               |
| 2.1300 | 410  | 0.7027        | -               |
| 2.1821 | 420  | 1.5933        | -               |
| 2.2341 | 430  | 2.295         | -               |
| 2.2861 | 440  | 1.042         | -               |
| 2.3381 | 450  | 2.8671        | 0.3661          |
| 2.3901 | 460  | 1.879         | -               |
| 2.4421 | 470  | 4.0556        | -               |
| 2.4941 | 480  | 2.9677        | -               |
| 2.5462 | 490  | 1.4443        | -               |
| 2.5982 | 500  | 3.2575        | -               |
| 2.6502 | 510  | 1.6124        | -               |
| 2.7022 | 520  | 1.3976        | -               |
| 2.7542 | 530  | 1.3161        | -               |
| 2.8062 | 540  | 2.5047        | -               |
| 2.8583 | 550  | 0.9757        | -               |
| 2.9103 | 560  | 2.1051        | -               |
| 2.9623 | 570  | 2.4919        | -               |
| 3.0104 | 580  | 1.4737        | -               |
| 3.0624 | 590  | 1.3318        | -               |
| 3.1144 | 600  | 1.4474        | 0.4409          |
| 3.1664 | 610  | 2.3727        | -               |
| 3.2185 | 620  | 0.6234        | -               |
| 3.2705 | 630  | 1.9529        | -               |
| 3.3225 | 640  | 1.5384        | -               |
| 3.3745 | 650  | 1.5913        | -               |
| 3.4265 | 660  | 0.6265        | -               |
| 3.4785 | 670  | 2.1122        | -               |
| 3.5306 | 680  | 1.8046        | -               |
| 3.5826 | 690  | 0.8298        | -               |
| 3.6346 | 700  | 1.4242        | -               |
| 3.6866 | 710  | 1.5808        | -               |
| 3.7386 | 720  | 1.1792        | -               |
| 3.7906 | 730  | 2.7767        | -               |
| 3.8427 | 740  | 1.7814        | -               |
| 3.8947 | 750  | 0.5374        | 0.3227          |
| 3.9467 | 760  | 1.493         | -               |
| 3.9987 | 770  | 1.8282        | -               |
| 4.0468 | 780  | 1.6991        | -               |
| 4.0988 | 790  | 0.7883        | -               |
| 4.1508 | 800  | 0.841         | -               |
| 4.2029 | 810  | 0.923         | -               |
| 4.2549 | 820  | 0.3459        | -               |
| 4.3069 | 830  | 2.3643        | -               |
| 4.3589 | 840  | 0.9606        | -               |
| 4.4109 | 850  | 0.7961        | -               |
| 4.4629 | 860  | 1.749         | -               |
| 4.5150 | 870  | 0.6536        | -               |
| 4.5670 | 880  | 1.668         | -               |
| 4.6190 | 890  | 0.5919        | -               |
| 4.6710 | 900  | 1.2476        | 0.3258          |
| 4.7230 | 910  | 1.422         | -               |
| 4.7750 | 920  | 0.8616        | -               |
| 4.8270 | 930  | 0.2323        | -               |
| 4.8791 | 940  | 2.7915        | -               |
| 4.9311 | 950  | 0.6705        | -               |
| 4.9831 | 960  | 1.7353        | -               |
| 5.0312 | 970  | 1.7646        | -               |
| 5.0832 | 980  | 1.4311        | -               |
| 5.1352 | 990  | 0.7089        | -               |
| 5.1873 | 1000 | 1.631         | -               |
| 5.2393 | 1010 | 1.8051        | -               |
| 5.2913 | 1020 | 0.5302        | -               |
| 5.3433 | 1030 | 0.7428        | -               |
| 5.3953 | 1040 | 0.5852        | -               |
| 5.4473 | 1050 | 0.737         | 0.3283          |
| 5.4993 | 1060 | 1.492         | -               |
| 5.5514 | 1070 | 0.9142        | -               |
| 5.6034 | 1080 | 1.8887        | -               |
| 5.6554 | 1090 | 1.1079        | -               |
| 5.7074 | 1100 | 0.6984        | -               |
| 5.7594 | 1110 | 1.7174        | -               |
| 5.8114 | 1120 | 0.9411        | -               |
| 5.8635 | 1130 | 1.286         | -               |
| 5.9155 | 1140 | 2.1944        | -               |
| 5.9675 | 1150 | 1.2478        | -               |
| 6.0156 | 1160 | 0.7935        | -               |
| 6.0676 | 1170 | 1.4886        | -               |
| 6.1196 | 1180 | 1.3375        | -               |
| 6.1717 | 1190 | 2.9167        | -               |
| 6.2237 | 1200 | 0.3903        | 0.2734          |
| 6.2757 | 1210 | 1.326         | -               |
| 6.3277 | 1220 | 0.3135        | -               |
| 6.3797 | 1230 | 1.0881        | -               |
| 6.4317 | 1240 | 1.5096        | -               |
| 6.4837 | 1250 | 0.5525        | -               |
| 6.5358 | 1260 | 0.3606        | -               |
| 6.5878 | 1270 | 0.9334        | -               |
| 6.6398 | 1280 | 0.5658        | -               |
| 6.6918 | 1290 | 1.5978        | -               |
| 6.7438 | 1300 | 0.4212        | -               |
| 6.7958 | 1310 | 1.7793        | -               |
| 6.8479 | 1320 | 1.5593        | -               |
| 6.8999 | 1330 | 1.6738        | -               |
| 6.9519 | 1340 | 0.3041        | -               |
| 7.0    | 1350 | 0.5286        | 0.2737          |
| 7.0520 | 1360 | 1.7618        | -               |
| 7.1040 | 1370 | 0.4629        | -               |
| 7.1560 | 1380 | 0.4087        | -               |
| 7.2081 | 1390 | 0.3099        | -               |
| 7.2601 | 1400 | 0.6679        | -               |
| 7.3121 | 1410 | 0.7688        | -               |
| 7.3641 | 1420 | 1.223         | -               |
| 7.4161 | 1430 | 0.8108        | -               |
| 7.4681 | 1440 | 0.24          | -               |
| 7.5202 | 1450 | 0.6616        | -               |
| 7.5722 | 1460 | 1.5255        | -               |
| 7.6242 | 1470 | 1.3865        | -               |
| 7.6762 | 1480 | 0.2771        | -               |
| 7.7282 | 1490 | 0.7809        | -               |
| 7.7802 | 1500 | 0.2114        | 0.2259          |
| 7.8322 | 1510 | 1.6341        | -               |
| 7.8843 | 1520 | 0.7665        | -               |
| 7.9363 | 1530 | 0.7204        | -               |
| 7.9883 | 1540 | 0.6557        | -               |
| 8.0364 | 1550 | 2.0155        | -               |
| 8.0884 | 1560 | 0.4718        | -               |
| 8.1404 | 1570 | 0.1254        | -               |
| 8.1925 | 1580 | 0.8067        | -               |
| 8.2445 | 1590 | 0.3196        | -               |
| 8.2965 | 1600 | 0.7162        | -               |
| 8.3485 | 1610 | 0.1727        | -               |
| 8.4005 | 1620 | 0.7634        | -               |
| 8.4525 | 1630 | 0.2472        | -               |
| 8.5046 | 1640 | 0.264         | -               |
| 8.5566 | 1650 | 0.5994        | 0.1935          |
| 8.6086 | 1660 | 0.4445        | -               |
| 8.6606 | 1670 | 0.9039        | -               |
| 8.7126 | 1680 | 0.7927        | -               |
| 8.7646 | 1690 | 0.4908        | -               |
| 8.8166 | 1700 | 0.7486        | -               |
| 8.8687 | 1710 | 1.377         | -               |
| 8.9207 | 1720 | 1.025         | -               |
| 8.9727 | 1730 | 1.1134        | -               |
| 9.0208 | 1740 | 0.271         | -               |
| 9.0728 | 1750 | 1.0931        | -               |
| 9.1248 | 1760 | 0.7956        | -               |
| 9.1769 | 1770 | 1.2794        | -               |
| 9.2289 | 1780 | 0.3901        | -               |
| 9.2809 | 1790 | 0.9033        | -               |
| 9.3329 | 1800 | 0.4934        | 0.1680          |
| 9.3849 | 1810 | 0.5104        | -               |
| 9.4369 | 1820 | 0.2879        | -               |
| 9.4889 | 1830 | 0.6565        | -               |
| 9.5410 | 1840 | 0.4523        | -               |
| 9.5930 | 1850 | 0.7147        | -               |
| 9.6450 | 1860 | 0.354         | -               |
| 9.6970 | 1870 | 0.277         | -               |
| 9.7490 | 1880 | 0.2066        | -               |
| 9.8010 | 1890 | 0.6588        | -               |
| 9.8531 | 1900 | 0.3789        | -               |
| 9.9051 | 1910 | 0.8525        | -               |
| 9.9571 | 1920 | 0.366         | -               |

</details>

### Framework Versions
- Python: 3.11.0
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->