mt5-small-mlsum / README.md
LeoCordoba's picture
fix lang
dbad905
|
raw
history blame
3.01 kB
metadata
language: es
tags:
  - summarization
  - sagemaker
  - mt5
  - spanish
license: apache-2.0
datasets:
  - mlsum - es
model-index:
  - name: mt5-small-mlsum
    results:
      - task:
          name: Abstractive Text Summarization
          type: abstractive-text-summarization
        dataset:
          name: 'MLSUM: MultiLingual SUMmarization dataset (Spanish)'
          type: mlsum
        metrics:
          - name: Validation ROGUE-1
            type: rogue-1
            value: 26.4352
          - name: Validation ROGUE-2
            type: rogue-2
            value: 8.9293
          - name: Validation ROGUE-L
            type: rogue-l
            value: 21.2622
          - name: Validation ROGUE-LSUM
            type: rogue-lsum
            value: 21.5518
          - name: Test ROGUE-1
            type: rogue-1
            value: 26.0756
          - name: Test ROGUE-2
            type: rogue-2
            value: 8.4669
          - name: Test ROGUE-L
            type: rogue-l
            value: 20.8167
          - name: Validation ROGUE-LSUM
            type: rogue-lsum
            value: 21.0822
widget:
  - text: >
      Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? 

      Philipp: Sure you can use the new Hugging Face Deep Learning Container. 

      Jeff: ok.

      Jeff: and how can I get started? 

      Jeff: where can I find documentation? 

      Philipp: ok, ok you can find everything here.
      https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face 

mt5-small-mlsum

This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. For more information look at:

Hyperparameters

{ "dataset_config": "es", "dataset_name": "mlsum", "do_eval": true, "do_predict": true, "do_train": true, "fp16": true, "max_target_length": 64, "model_name_or_path": "google/mt5-small", "num_train_epochs": 10, "output_dir": "/opt/ml/checkpoints", "per_device_eval_batch_size": 4, "per_device_train_batch_size": 4, "predict_with_generate": true, "sagemaker_container_log_level": 20, "sagemaker_program": "run_summarization.py", "save_strategy": "epoch", "seed": 7, "summary_column": "summary", "text_column": "text" }

Usage

Results

metric score
eval_rouge1 26.4352
eval_rouge2 8.9293
eval_rougeL 21.2622
eval_rougeLsum 21.5518
test_rouge1 26.0756
test_rouge2 8.4669
test_rougeL 20.8167
test_rougeLsum 21.0822