|
|
|
--- |
|
language: es |
|
tags: |
|
- summarization |
|
- sagemaker |
|
- mt5 |
|
- spanish |
|
license: apache-2.0 |
|
datasets: |
|
- mlsum - es |
|
model-index: |
|
- name: mt5-small-mlsum |
|
results: |
|
- task: |
|
name: Abstractive Text Summarization |
|
type: abstractive-text-summarization |
|
dataset: |
|
name: "MLSUM: MultiLingual SUMmarization dataset (Spanish)" |
|
type: mlsum |
|
metrics: |
|
- name: Validation ROGUE-1 |
|
type: rogue-1 |
|
value: 26.4352 |
|
- name: Validation ROGUE-2 |
|
type: rogue-2 |
|
value: 8.9293 |
|
- name: Validation ROGUE-L |
|
type: rogue-l |
|
value: 21.2622 |
|
- name: Validation ROGUE-LSUM |
|
type: rogue-lsum |
|
value: 21.5518 |
|
- name: Test ROGUE-1 |
|
type: rogue-1 |
|
value: 26.0756 |
|
- name: Test ROGUE-2 |
|
type: rogue-2 |
|
value: 8.4669 |
|
- name: Test ROGUE-L |
|
type: rogue-l |
|
value: 20.8167 |
|
- name: Validation ROGUE-LSUM |
|
type: rogue-lsum |
|
value: 21.0822 |
|
widget: |
|
- text: | |
|
Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? |
|
Philipp: Sure you can use the new Hugging Face Deep Learning Container. |
|
Jeff: ok. |
|
Jeff: and how can I get started? |
|
Jeff: where can I find documentation? |
|
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face |
|
--- |
|
## mt5-small-mlsum |
|
This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. |
|
For more information look at: |
|
- [🤗 Transformers Documentation: Amazon SageMaker](https://huggingface.co/transformers/sagemaker.html) |
|
- [Example Notebooks](https://github.com/huggingface/notebooks/tree/master/sagemaker) |
|
- [Amazon SageMaker documentation for Hugging Face](https://docs.aws.amazon.com/sagemaker/latest/dg/hugging-face.html) |
|
- [Python SDK SageMaker documentation for Hugging Face](https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/index.html) |
|
- [Deep Learning Container](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#huggingface-training-containers) |
|
## Hyperparameters |
|
{ |
|
"dataset_config": "es", |
|
"dataset_name": "mlsum", |
|
"do_eval": true, |
|
"do_predict": true, |
|
"do_train": true, |
|
"fp16": true, |
|
"max_target_length": 64, |
|
"model_name_or_path": "google/mt5-small", |
|
"num_train_epochs": 10, |
|
"output_dir": "/opt/ml/checkpoints", |
|
"per_device_eval_batch_size": 4, |
|
"per_device_train_batch_size": 4, |
|
"predict_with_generate": true, |
|
"sagemaker_container_log_level": 20, |
|
"sagemaker_program": "run_summarization.py", |
|
"save_strategy": "epoch", |
|
"seed": 7, |
|
"summary_column": "summary", |
|
"text_column": "text" |
|
} |
|
## Usage |
|
|
|
## Results |
|
| metric | score | |
|
| --- | ----- | |
|
| eval_rouge1 | 26.4352 | |
|
| eval_rouge2 | 8.9293 | |
|
| eval_rougeL | 21.2622 | |
|
| eval_rougeLsum | 21.5518 | |
|
| test_rouge1 | 26.0756 | |
|
| test_rouge2 | 8.4669 | |
|
| test_rougeL | 20.8167 | |
|
| test_rougeLsum | 21.0822 | |
|
|