LiukG's picture
End of training
d5696b1 verified
metadata
base_model: AIRI-Institute/gena-lm-bert-base-t2t
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: gut_1024-finetuned-lora-bert-base-t2t
    results: []

gut_1024-finetuned-lora-bert-base-t2t

This model is a fine-tuned version of AIRI-Institute/gena-lm-bert-base-t2t on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4700
  • F1: 0.8448
  • Mcc Score: 0.5728
  • Accuracy: 0.7943

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss F1 Mcc Score Accuracy
0.6922 0.02 100 0.6644 0.7478 0.0 0.5971
0.6582 0.04 200 0.6766 0.4699 0.2578 0.5570
0.6578 0.05 300 0.5801 0.8210 0.4886 0.7508
0.5793 0.07 400 0.5814 0.8013 0.4141 0.7082
0.5933 0.09 500 0.5877 0.7408 0.4494 0.7183
0.5616 0.11 600 0.5000 0.8229 0.5282 0.7766
0.5168 0.12 700 0.5027 0.8347 0.5540 0.7884
0.4788 0.14 800 0.5284 0.7922 0.5012 0.7572
0.5255 0.16 900 0.4859 0.8445 0.5696 0.7901
0.5404 0.18 1000 0.4700 0.8448 0.5728 0.7943

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2