|
--- |
|
base_model: AIRI-Institute/gena-lm-bigbird-base-t2t |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: test_run |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# test_run |
|
|
|
This model is a fine-tuned version of [AIRI-Institute/gena-lm-bigbird-base-t2t](https://huggingface.co/AIRI-Institute/gena-lm-bigbird-base-t2t) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2397 |
|
- F1: 0.8195 |
|
- Mcc Score: 0.5808 |
|
- Accuracy: 0.7933 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Mcc Score | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:--------:| |
|
| 0.6329 | 1.0 | 94 | 0.5532 | 0.7711 | 0.4531 | 0.7335 | |
|
| 0.4921 | 2.0 | 188 | 0.4789 | 0.8359 | 0.5501 | 0.7832 | |
|
| 0.3981 | 3.0 | 282 | 0.4760 | 0.8347 | 0.5789 | 0.7987 | |
|
| 0.3579 | 4.0 | 376 | 0.6767 | 0.7737 | 0.5377 | 0.7587 | |
|
| 0.2488 | 5.0 | 470 | 0.5478 | 0.8327 | 0.5887 | 0.8015 | |
|
| 0.1889 | 6.0 | 564 | 0.7844 | 0.8231 | 0.5846 | 0.7962 | |
|
| 0.1569 | 7.0 | 658 | 0.8773 | 0.8254 | 0.5868 | 0.7978 | |
|
| 0.1034 | 8.0 | 752 | 1.4445 | 0.7499 | 0.4939 | 0.7353 | |
|
| 0.0832 | 9.0 | 846 | 1.6405 | 0.7195 | 0.4955 | 0.7205 | |
|
| 0.1051 | 10.0 | 940 | 1.2397 | 0.8195 | 0.5808 | 0.7933 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|