|
import math |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
from transformers.models.llama.modeling_llama import ( |
|
Cache, |
|
LlamaAttention, |
|
LlamaFlashAttention2, |
|
apply_rotary_pos_emb, |
|
repeat_kv, |
|
) |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
def llama_torch_attn_forward( |
|
self: "LlamaAttention", |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional["Cache"] = None, |
|
output_attentions: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
if getattr(self.config, "group_size_ratio", None) and self.training: |
|
groupsz = int(q_len * getattr(self.config, "group_size_ratio")) |
|
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz) |
|
num_groups = q_len // groupsz |
|
|
|
def shift(state: torch.Tensor) -> torch.Tensor: |
|
state = state.transpose(1, 2) |
|
state = torch.cat( |
|
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)), |
|
dim=2, |
|
) |
|
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attention_mask is not None: |
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
if getattr(self.config, "group_size_ratio", None) and self.training: |
|
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim) |
|
attn_output = torch.cat( |
|
( |
|
attn_output[:, :, : self.num_heads // 2], |
|
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1), |
|
) |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
def llama_flash_attn_forward( |
|
self: "LlamaFlashAttention2", |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
output_attentions = False |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
dropout_rate = self.attention_dropout if self.training else 0.0 |
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once("The input hidden states seems to be silently casted in float32.") |
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
if getattr(self.config, "group_size_ratio", None) and self.training: |
|
groupsz = int(q_len * getattr(self.config, "group_size_ratio")) |
|
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz) |
|
num_groups = q_len // groupsz |
|
|
|
def shift(state: torch.Tensor) -> torch.Tensor: |
|
state = torch.cat( |
|
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)), |
|
dim=2, |
|
) |
|
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim) |
|
|
|
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1) |
|
|
|
attn_output: torch.Tensor = self._flash_attention_forward( |
|
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate |
|
) |
|
|
|
if getattr(self.config, "group_size_ratio", None) and self.training: |
|
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim) |
|
attn_output = torch.cat( |
|
( |
|
attn_output[:, :, : self.num_heads // 2], |
|
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1), |
|
) |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
def apply_llama_patch() -> None: |
|
LlamaAttention.forward = llama_torch_attn_forward |
|
LlamaFlashAttention2.forward = llama_flash_attn_forward |
|
|