autoevaluator's picture
Add evaluation results on the lener_br config and validation split of lener_br
93d0c9a
|
raw
history blame
4.62 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - lener_br
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: xlm-roberta-large-finetuned-lener-br
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: lener_br
          type: lener_br
          config: lener_br
          split: train
          args: lener_br
        metrics:
          - name: Precision
            type: precision
            value: 0.8545767716535433
          - name: Recall
            type: recall
            value: 0.8976479710519514
          - name: F1
            type: f1
            value: 0.8755830076893987
          - name: Accuracy
            type: accuracy
            value: 0.979126510974644
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: lener_br
          type: lener_br
          config: lener_br
          split: test
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9842606502473917
            verified: true
          - name: Precision
            type: precision
            value: 0.9880888491353608
            verified: true
          - name: Recall
            type: recall
            value: 0.9863977974551678
            verified: true
          - name: F1
            type: f1
            value: 0.9872425991435487
            verified: true
          - name: loss
            type: loss
            value: 0.12697908282279968
            verified: true
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: lener_br
          type: lener_br
          config: lener_br
          split: validation
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.979126510974644
            verified: true
          - name: Precision
            type: precision
            value: 0.9846948786709399
            verified: true
          - name: Recall
            type: recall
            value: 0.9839386958155646
            verified: true
          - name: F1
            type: f1
            value: 0.9843166420124387
            verified: true
          - name: loss
            type: loss
            value: 0.17586557567119598
            verified: true

xlm-roberta-large-finetuned-lener-br

This model is a fine-tuned version of xlm-roberta-large on the lener_br dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Precision: 0.8546
  • Recall: 0.8976
  • F1: 0.8756
  • Accuracy: 0.9791

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0836 1.0 3914 nan 0.5735 0.8348 0.6799 0.9526
0.0664 2.0 7828 nan 0.8153 0.8315 0.8233 0.9658
0.0505 3.0 11742 nan 0.6885 0.9147 0.7857 0.9644
0.1165 4.0 15656 nan 0.7572 0.8067 0.7811 0.9641
0.0206 5.0 19570 nan 0.8678 0.8770 0.8723 0.9774
0.02 6.0 23484 nan 0.7285 0.8907 0.8015 0.9669
0.0248 7.0 27398 nan 0.8717 0.9095 0.8902 0.9793
0.0223 8.0 31312 nan 0.8407 0.8801 0.8600 0.9766
0.0084 9.0 35226 nan 0.8354 0.8684 0.8516 0.9705
0.0067 10.0 39140 nan 0.8312 0.9062 0.8671 0.9753
0.006 11.0 43054 nan 0.8866 0.8953 0.8909 0.9784
0.0058 12.0 46968 nan 0.8961 0.8987 0.8974 0.9807
0.0062 13.0 50882 nan 0.8360 0.8785 0.8567 0.9783
0.0053 14.0 54796 nan 0.8327 0.8749 0.8533 0.9782
0.003 15.0 58710 nan 0.8546 0.8976 0.8756 0.9791

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1