MANMEET75's picture
End of training
92046e3 verified
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: PaymentNonPayment-ModernBERT
    results: []

PaymentNonPayment-ModernBERT

This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0157
  • Accuracy: 0.9985
  • F1: 0.9985
  • Precision: 0.9985
  • Recall: 0.9985
  • Roc Auc: 0.9984

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Roc Auc
16.0312 0.1996 79 0.1616 0.9823 0.9823 0.9829 0.9823 0.9803
0.0001 0.3992 158 0.1080 0.9882 0.9882 0.9884 0.9882 0.9890
0.0001 0.5989 237 0.0169 0.9985 0.9985 0.9985 0.9985 0.9984
0.0003 0.7985 316 0.0138 0.9985 0.9985 0.9985 0.9985 0.9984
0.0001 0.9981 395 0.0157 0.9985 0.9985 0.9985 0.9985 0.9984

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0