metadata
library_name: transformers
base_model: MHGanainy/xmod-roberta-base-legal-multi
tags:
- generated_from_trainer
model-index:
- name: xmod-roberta-base-legal-multi-ecthr-downstream-ecthr-a
results: []
xmod-roberta-base-legal-multi-ecthr-downstream-ecthr-a
This model is a fine-tuned version of MHGanainy/xmod-roberta-base-legal-multi on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2232
- Macro-f1: 0.6306
- Micro-f1: 0.6835
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 1
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Macro-f1 | Micro-f1 |
---|---|---|---|---|---|
No log | 1.0 | 282 | 0.1829 | 0.5518 | 0.6772 |
0.1547 | 2.0 | 564 | 0.1643 | 0.5833 | 0.6849 |
0.1547 | 3.0 | 846 | 0.1821 | 0.6056 | 0.6864 |
0.1031 | 4.0 | 1128 | 0.1714 | 0.6432 | 0.7086 |
0.1031 | 5.0 | 1410 | 0.1662 | 0.6357 | 0.6958 |
0.0836 | 6.0 | 1692 | 0.1835 | 0.6309 | 0.6896 |
0.0836 | 7.0 | 1974 | 0.2232 | 0.6306 | 0.6835 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1