|
--- |
|
library_name: transformers |
|
base_model: MHGanainy/xmod-roberta-base-legal-multi |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: xmod-roberta-base-legal-multi-ecthr-downstream-ecthr-a |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xmod-roberta-base-legal-multi-ecthr-downstream-ecthr-a |
|
|
|
This model is a fine-tuned version of [MHGanainy/xmod-roberta-base-legal-multi](https://huggingface.co/MHGanainy/xmod-roberta-base-legal-multi) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2232 |
|
- Macro-f1: 0.6306 |
|
- Micro-f1: 0.6835 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 1 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Macro-f1 | Micro-f1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| |
|
| No log | 1.0 | 282 | 0.1829 | 0.5518 | 0.6772 | |
|
| 0.1547 | 2.0 | 564 | 0.1643 | 0.5833 | 0.6849 | |
|
| 0.1547 | 3.0 | 846 | 0.1821 | 0.6056 | 0.6864 | |
|
| 0.1031 | 4.0 | 1128 | 0.1714 | 0.6432 | 0.7086 | |
|
| 0.1031 | 5.0 | 1410 | 0.1662 | 0.6357 | 0.6958 | |
|
| 0.0836 | 6.0 | 1692 | 0.1835 | 0.6309 | 0.6896 | |
|
| 0.0836 | 7.0 | 1974 | 0.2232 | 0.6306 | 0.6835 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|