|
---
|
|
license: apache-2.0
|
|
pipeline_tag: text-generation
|
|
datasets:
|
|
- liuhaotian/LLaVA-Pretrain
|
|
- liuhaotian/LLaVA-Instruct-150K
|
|
---
|
|
# ๐ Imp
|
|
|
|
\[[Paper](https://arxiv.org/abs/2405.12107)\] [[Demo](https://xmbot.net/imp/)\] [[Github](https://github.com/MILVLG/imp)\]
|
|
|
|
|
|
## Introduction
|
|
|
|
The Imp project aims to provide a family of highly capable yet lightweight LMMs. Our `Imp-v1.5-4B-Phi3` is a strong lightweight LMMs with only **4B** parameters, which is build upon [Phi-3 ](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)(3.8B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on 1M mixed dataset.
|
|
|
|
|
|
We release our model weights and provide an example below to run our model . Detailed technical report and corresponding training/evaluation code will be released soon on our [GitHub repo](https://github.com/MILVLG/imp). We will persistently improve our model and release the next versions to further improve model performance :)
|
|
|
|
|
|
## How to use
|
|
|
|
|
|
**Install dependencies**
|
|
```bash
|
|
pip install transformers # latest version is ok, but we recommend v4.36.0
|
|
pip install -q pillow accelerate einops
|
|
```
|
|
|
|
You can use the following code for model inference. The format of text instruction is similar to [LLaVA](https://github.com/haotian-liu/LLaVA). Note that the example can only be run on GPUs currently.
|
|
|
|
```Python
|
|
import torch
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
from PIL import Image
|
|
|
|
torch.set_default_device("cuda")
|
|
|
|
#Create model
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"MILVLG/Imp-v1.5-4B-Phi3",
|
|
torch_dtype=torch.float16,
|
|
device_map="auto",
|
|
trust_remote_code=True)
|
|
tokenizer = AutoTokenizer.from_pretrained("MILVLG/Imp-v1.5-4B-Phi3", trust_remote_code=True)
|
|
|
|
#Set inputs
|
|
text = "<|user|>\n<image>\nWhat are the colors of the bus in the image?\n<|end|>\n<|assistant|>\n"
|
|
image = Image.open("images/bus.jpg")
|
|
|
|
input_ids = tokenizer(text, return_tensors='pt').input_ids
|
|
image_tensor = model.image_preprocess(image)
|
|
|
|
#Generate the answer
|
|
output_ids = model.generate(
|
|
input_ids,
|
|
max_new_tokens=100,
|
|
images=image_tensor,
|
|
use_cache=True)[0]
|
|
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
|
|
```
|
|
|
|
## Model evaluation
|
|
We conduct evaluation on 9 commonly-used benchmarks, including 5 academic VQA benchmarks and 4 popular MLLM benchmarks, to compare our Imp model with LLaVA (7B) and existing lightweight LMMs of similar model sizes.
|
|
|
|
| Models | Size | VQAv2 | GQA | SQA(IMG) | TextVQA | POPE | MME(P) | MMB |MMB_CN|MM-Vet|
|
|
|:--------:|:-----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|:-------:|
|
|
| Bunny-v1.0-4B| 4B | **81.5** |**63.5** | 75.1|- | 86.7| 1495.2 |**73.5** |-|-|
|
|
| **Imp-v1.5-4B-Phi3**| 4B | **81.5** | **63.5** | **78.0**|60.2 | **86.9**| **1507.7** |73.3 |61.1|44.6|
|
|
|
|
|
|
|
|
## License
|
|
This project is licensed under the Apache License 2.0 - see the [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) file for details.
|
|
|
|
|
|
## Citation
|
|
|
|
If you use our model or refer our work in your studies, please cite:
|
|
|
|
```bibtex
|
|
@article{imp2024,
|
|
title={Imp: Highly Capable Large Multimodal Models for Mobile Devices},
|
|
author={Shao, Zhenwei and Yu, Zhou and Yu, Jun and Ouyang, Xuecheng and Zheng, Lihao and Gai, Zhenbiao and Wang, Mingyang and Ding, Jiajun},
|
|
journal={arXiv preprint arXiv:2405.12107},
|
|
year={2024}
|
|
}
|
|
``` |