Text Generation
Transformers
Safetensors
imp_phi3
conversational
custom_code
File size: 3,560 Bytes
6eb0e68
 
686ce70
 
 
 
6eb0e68
686ce70
 
b189acc
 
686ce70
 
 
deb3590
686ce70
 
 
 
 
 
 
 
 
 
 
 
 
 
b134a69
686ce70
 
 
 
 
 
 
 
 
 
c044298
686ce70
 
 
c044298
686ce70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb3590
686ce70
 
 
555a04c
 
686ce70
 
 
 
 
 
 
 
 
 
 
 
c044298
 
251a62f
c044298
 
686ce70
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---

license: apache-2.0
pipeline_tag: text-generation
datasets:
- liuhaotian/LLaVA-Pretrain
- liuhaotian/LLaVA-Instruct-150K
---

# 😈 Imp

\[[Paper](https://arxiv.org/abs/2405.12107)\]  [[Demo](https://xmbot.net/imp/)\]  [[Github](https://github.com/MILVLG/imp)\]


## Introduction

The Imp project aims to provide a family of highly capable yet lightweight LMMs. Our `Imp-v1.5-4B-Phi3` is a strong lightweight LMMs with only **4B** parameters, which is build upon [Phi-3 ](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)(3.8B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on 1M mixed dataset.  


We release our model weights and provide an example below to run our model . Detailed technical report and corresponding training/evaluation code will be released soon on our [GitHub repo](https://github.com/MILVLG/imp). We will persistently improve our model and release the next versions to further improve model performance :) 


## How to use


**Install dependencies**
```bash

pip install transformers # latest version is ok, but we recommend v4.36.0

pip install -q pillow accelerate einops

```

You can use the following code for model inference. The format of text instruction is similar to [LLaVA](https://github.com/haotian-liu/LLaVA). Note that the example can only be run on GPUs currently.

```Python

import torch

from transformers import AutoModelForCausalLM, AutoTokenizer

from PIL import Image



torch.set_default_device("cuda")



#Create model

model = AutoModelForCausalLM.from_pretrained(

    "MILVLG/Imp-v1.5-4B-Phi3", 

    torch_dtype=torch.float16, 

    device_map="auto",

    trust_remote_code=True)

tokenizer = AutoTokenizer.from_pretrained("MILVLG/Imp-v1.5-4B-Phi3", trust_remote_code=True)



#Set inputs

text = "<|user|>\n<image>\nWhat are the colors of the bus in the image?\n<|end|>\n<|assistant|>\n"

image = Image.open("images/bus.jpg")



input_ids = tokenizer(text, return_tensors='pt').input_ids

image_tensor = model.image_preprocess(image)



#Generate the answer

output_ids = model.generate(

    input_ids,

    max_new_tokens=100,

    images=image_tensor,

    use_cache=True)[0]

print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())

```

## Model evaluation
We conduct evaluation on 9 commonly-used benchmarks, including 5 academic VQA benchmarks and 4 popular MLLM benchmarks, to compare our Imp model with LLaVA (7B) and existing lightweight LMMs of similar model sizes.

| Models | Size | VQAv2 | GQA | SQA(IMG) | TextVQA | POPE |  MME(P) | MMB  |MMB_CN|MM-Vet|

|:--------:|:-----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|:-------:|

| Bunny-v1.0-4B| 4B | **81.5** |**63.5** | 75.1|- | 86.7| 1495.2 |**73.5**  |-|-|

| **Imp-v1.5-4B-Phi3**| 4B | **81.5** | **63.5** | **78.0**|60.2 | **86.9**| **1507.7** |73.3  |61.1|44.6|







## License

This project is licensed under the Apache License 2.0 - see the [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) file for details.





## Citation



If you use our model or refer our work in your studies, please cite:



```bibtex

@article{imp2024,

  title={Imp: Highly Capable Large Multimodal Models for Mobile Devices},

  author={Shao, Zhenwei and Yu, Zhou and Yu, Jun and Ouyang, Xuecheng and Zheng, Lihao and Gai, Zhenbiao and Wang, Mingyang and Ding, Jiajun},

  journal={arXiv preprint arXiv:2405.12107},

  year={2024}

}

```