|
--- |
|
library_name: transformers |
|
tags: |
|
- nli |
|
- bert |
|
- natural-language-inference |
|
language: |
|
- ru |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
base_model: |
|
- cointegrated/rubert-tiny2 |
|
pipeline_tag: text-classification |
|
model-index: |
|
- name: rubert-tiny-nli-terra-v0 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: TERRA |
|
type: NLI |
|
split: validation |
|
metrics: |
|
- type: accuracy |
|
value: 0.6677524429967426 |
|
name: Accuracy |
|
- type: f1 |
|
value: 0.6666666666666666 |
|
name: F1 |
|
- type: precision |
|
value: 0.6666666666666666 |
|
name: Precision |
|
- type: recall |
|
value: 0.6666666666666666 |
|
name: Recall |
|
--- |
|
|
|
**⚠️ Disclaimer: This model is in the early stages of development and may produce low-quality predictions. For better results, consider using the recommended Russian natural language inference models available [here](https://huggingface.co/cointegrated).** |
|
|
|
# RuBERT-tiny-nli v0 |
|
|
|
This model is an initial attempt to fine-tune the [RuBERT-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) model for a two-way natural language inference task, utilizing the Russian [Textual Entailment Recognition](https://russiansuperglue.com/tasks/task_info/TERRa) dataset. While it aims to enhance understanding of Russian text, its performance is currently limited. |
|
|
|
|
|
## Usage |
|
How to run the model for NLI: |
|
|
|
```python |
|
# !pip install transformers sentencepiece --quiet |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
model_id = 'Marwolaeth/rubert-tiny-nli-terra-v0' |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_id) |
|
if torch.cuda.is_available(): |
|
model.cuda() |
|
|
|
# An example from the base model card |
|
premise1 = 'Сократ - человек, а все люди смертны.' |
|
hypothesis1 = 'Сократ никогда не умрёт.' |
|
with torch.inference_mode(): |
|
prediction = model( |
|
**tokenizer(premise1, hypothesis1, return_tensors='pt').to(model.device) |
|
) |
|
p = torch.softmax(prediction.logits, -1).cpu().numpy()[0] |
|
print({v: p[k] for k, v in model.config.id2label.items()}) |
|
# {'not_entailment': 0.7698182, 'entailment': 0.23018183} |
|
|
|
# An example concerning sentiments |
|
premise2 = 'Я ненавижу желтые занавески' |
|
hypothesis2 = 'Мне нравятся желтые занавески' |
|
with torch.inference_mode(): |
|
prediction = model( |
|
**tokenizer(premise2, hypothesis2, return_tensors='pt').to(model.device) |
|
) |
|
p = torch.softmax(prediction.logits, -1).cpu().numpy()[0] |
|
print({v: p[k] for k, v in model.config.id2label.items()}) |
|
# {'not_entailment': 0.60584205, 'entailment': 0.3941579} |
|
``` |
|
|
|
## Model Performance Metrics |
|
|
|
The following metrics summarize the performance of the model on the validation dataset: |
|
|
|
| Metric | Value | |
|
|----------------------------------|---------------------------| |
|
| **Validation Loss** | 0.6261 | |
|
| **Validation Accuracy** | 66.78% | |
|
| **Validation F1 Score** | 66.67% | |
|
| **Validation Precision** | 66.67% | |
|
| **Validation Recall** | 66.67% | |
|
| **Validation Runtime*** | 0.7043 seconds | |
|
| **Samples per Second*** | 435.88 | |
|
| **Steps per Second*** | 14.20 | |
|
|
|
*Using T4 GPU with Google Colab |