PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. It also represents my first attempt to effectively train a RL agent using StableBaselines3 and Gymnasium, done during the 🤗 Deep Reinforcement Learning Course.
Usage (with Stable-baselines3)
import gymnasium as gym
from huggingface_sb3 import load_from_hub
from stable_baselines3 import PPO
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.evaluation import evaluate_policy
repo_id = "Mattizza/PPO-LunarLander-v2_v0__DeepRLCourse"
filename = "ppo-LunarLander-v2_v0.zip"
checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint, print_system_info=True)
# Evaluate the agent
eval_env = Monitor(gym.make("LunarLander-v2"))
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
- Downloads last month
- 0
Evaluation results
- mean_reward on LunarLander-v2self-reported264.37 +/- 27.14