metadata
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
- gymnasium
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 264.37 +/- 27.14
name: mean_reward
verified: false
license: mit
language:
- en
pipeline_tag: reinforcement-learning
PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. It also represents my first attempt to effectively train a RL agent using StableBaselines3 and Gymnasium, done during the 🤗 Deep Reinforcement Learning Course.
Usage (with Stable-baselines3)
import gymnasium as gym
from huggingface_sb3 import load_from_hub
from stable_baselines3 import PPO
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.evaluation import evaluate_policy
repo_id = "Mattizza/PPO-LunarLander-v2_v0__DeepRLCourse"
filename = "ppo-LunarLander-v2_v0.zip"
checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint, print_system_info=True)
# Evaluate the agent
eval_env = Monitor(gym.make("LunarLander-v2"))
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")