MiniMax-M1-40k / docs /transformers_deployment_guide.md
QscQ's picture
Update docs/transformers_deployment_guide.md
3df927f verified
# 🚀 MiniMax Model Transformers Deployment Guide
[Transformers中文版部署指南](./transformers_deployment_guide_cn.md)
## 📖 Introduction
This guide will help you deploy the MiniMax-M1 model using the [Transformers](https://huggingface.co/docs/transformers/index) library. Transformers is a widely used deep learning library that provides a rich collection of pre-trained models and flexible model operation interfaces.
## 🛠️ Environment Setup
### Installing Transformers
```bash
pip install transformers torch accelerate
```
## 📋 Basic Usage Example
The pre-trained model can be used as follows:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
MODEL_PATH = "{MODEL_PATH}"
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
messages = [
{"role": "user", "content": [{"type": "text", "text": "What is your favourite condiment?"}]},
{"role": "assistant", "content": [{"type": "text", "text": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}]},
{"role": "user", "content": [{"type": "text", "text": "Do you have mayonnaise recipes?"}]}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer(text, return_tensors="pt").to(model.device)
generation_config = GenerationConfig(
max_new_tokens=20,
eos_token_id=tokenizer.eos_token_id,
use_cache=True,
)
generated_ids = model.generate(**model_inputs, generation_config=generation_config)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
## ⚡ Performance Optimization
### Speeding up with Flash Attention
The code snippet above showcases inference without any optimization tricks. However, one can drastically speed up the model by leveraging [Flash Attention](../perf_train_gpu_one#flash-attention-2), which is a faster implementation of the attention mechanism used inside the model.
First, make sure to install the latest version of Flash Attention 2:
```bash
pip install -U flash-attn --no-build-isolation
```
Also make sure that you have hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of the [Flash Attention repository](https://github.com/Dao-AILab/flash-attention). Additionally, ensure you load your model in half-precision (e.g. `torch.float16`).
To load and run a model using Flash Attention-2, refer to the snippet below:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_PATH = "{MODEL_PATH}"
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, trust_remote_code=True, torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
prompt = "My favourite condiment is"
model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
response = tokenizer.batch_decode(generated_ids)[0]
print(response)
```
## 📮 Getting Support
If you encounter any issues while deploying the MiniMax-M1 model:
- Please check our official documentation
- Contact our technical support team through official channels
- Submit an Issue on our GitHub repository
We continuously optimize the deployment experience on Transformers and welcome your feedback!