|
""" |
|
Processor class for MiniMaxVL01. |
|
""" |
|
|
|
from typing import List, Union |
|
|
|
from transformers.feature_extraction_utils import BatchFeature |
|
from transformers.image_utils import ImageInput, get_image_size, to_numpy_array |
|
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin |
|
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput |
|
from transformers.utils import logging |
|
|
|
from .image_processor import CustomBatchFeature |
|
logger = logging.get_logger(__name__) |
|
|
|
import os |
|
|
|
LEGACY_PROCESSING = int(os.getenv('LEGACY_PROCESSING', 1)) |
|
|
|
class MiniMaxVL01ProcessorKwargs(ProcessingKwargs, total=False): |
|
_defaults = { |
|
"text_kwargs": { |
|
"padding": False, |
|
}, |
|
"images_kwargs": {}, |
|
} |
|
|
|
def get_hw_multiple_of(image_size, multiple, max_size=None): |
|
w, h = image_size |
|
new_w = w if w % multiple == 0 else w + (multiple - w % multiple) |
|
new_h = h if h % multiple == 0 else h + (multiple - h % multiple) |
|
if max_size is not None: |
|
assert isinstance(max_size, (list, tuple)) and len(max_size) == 2 |
|
max_w, max_h = max_size |
|
assert max_w % multiple == 0 and max_h % multiple == 0 |
|
if new_w > max_w or new_h > max_h: |
|
|
|
|
|
|
|
new_w = min((new_w * max_w) // new_w, (new_w * max_h) // new_h) |
|
new_h = min((new_h * max_w) // new_w, (new_h * max_h) // new_h) |
|
|
|
new_w = new_w if new_w % multiple == 0 else new_w + (multiple - new_w % multiple) |
|
new_h = new_h if new_h % multiple == 0 else new_h + (multiple - new_h % multiple) |
|
assert new_w % multiple == 0 and new_h % multiple == 0 |
|
assert new_w <= max_w and new_h <= max_h |
|
return new_w, new_h |
|
|
|
def split_special_tokens(text, special_tokens): |
|
|
|
import re |
|
pattern = '|'.join(map(re.escape, special_tokens)) |
|
return re.split(f'({pattern})', text) |
|
|
|
|
|
def select_best_resolution(original_size, possible_resolutions): |
|
""" |
|
Selects the best resolution from a list of possible resolutions based on the original size. |
|
|
|
Args: |
|
original_size (tuple): The original size of the image in the format (width, height). |
|
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. |
|
|
|
Returns: |
|
tuple: The best fit resolution in the format (width, height). |
|
""" |
|
original_width, original_height = original_size |
|
best_fit = None |
|
max_effective_resolution = 0 |
|
min_wasted_resolution = float("inf") |
|
|
|
for width, height in possible_resolutions: |
|
|
|
scale = min(width / original_width, height / original_height) |
|
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale) |
|
|
|
|
|
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height) |
|
wasted_resolution = (width * height) - effective_resolution |
|
|
|
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution): |
|
max_effective_resolution = effective_resolution |
|
min_wasted_resolution = wasted_resolution |
|
best_fit = (width, height) |
|
|
|
return best_fit |
|
|
|
|
|
def get_w_h_num(resolution, best_resolution): |
|
original_width, original_height = resolution |
|
current_width, current_height = best_resolution |
|
|
|
current_height = int(current_height) |
|
current_width = int(current_width) |
|
original_height = int(original_height) |
|
original_width = int(original_width) |
|
|
|
original_aspect_ratio = original_width / original_height |
|
current_aspect_ratio = current_width / current_height |
|
|
|
if original_aspect_ratio > current_aspect_ratio: |
|
scale_factor = current_width / original_width |
|
new_height = int(original_height * current_width) // original_width |
|
padding = (current_height - new_height) // 2 |
|
w_num = current_width |
|
h_num = current_height - 2*padding |
|
else: |
|
scale_factor = current_height / original_height |
|
new_width = int(original_width * current_height) // original_height |
|
|
|
padding = (current_width - new_width) // 2 |
|
w_num = current_width - 2*padding |
|
h_num = current_height |
|
|
|
return (w_num, h_num) |
|
|
|
def get_num_token(img_h, img_w, grid_pinpoints, patch_size): |
|
|
|
|
|
best_resolution = select_best_resolution((img_w,img_h), grid_pinpoints) |
|
resized_w, resized_h = best_resolution |
|
w_num, h_num = get_w_h_num((img_w, img_h), (resized_w// patch_size, resized_h// patch_size)) |
|
total_token = int((w_num+1) * h_num) + (336//patch_size)**2 |
|
return total_token |
|
|
|
|
|
class MiniMaxVL01Processor(ProcessorMixin): |
|
r""" |
|
Constructs a MiniMaxVL01 processor which wraps a MiniMaxVL01 image processor and a MiniMaxVL01 tokenizer into a single processor. |
|
|
|
[`MiniMaxVL01Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the |
|
[`~MiniMaxVL01Processor.__call__`] and [`~MiniMaxVL01Processor.decode`] for more information. |
|
|
|
Args: |
|
image_processor ([`CLIPImageProcessor`], *optional*): |
|
The image processor is a required input. |
|
tokenizer ([`LlamaTokenizerFast`], *optional*): |
|
The tokenizer is a required input. |
|
patch_size (`int`, *optional*): |
|
Patch size from the vision tower. |
|
vision_feature_select_strategy (`str`, *optional*): |
|
The feature selection strategy used to select the vision feature from the vision backbone. |
|
Shoudl be same as in model's config |
|
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages |
|
in a chat into a tokenizable string. |
|
image_token (`str`, *optional*, defaults to `"<image>"`): |
|
Special token used to denote image location. |
|
""" |
|
|
|
attributes = ["image_processor", "tokenizer"] |
|
valid_kwargs = ["chat_template", "patch_size", "vision_feature_select_strategy", "image_token"] |
|
image_processor_class = "AutoImageProcessor" |
|
tokenizer_class = "AutoTokenizer" |
|
|
|
def __init__( |
|
self, |
|
image_processor=None, |
|
tokenizer=None, |
|
patch_size=None, |
|
vision_feature_select_strategy=None, |
|
chat_template=None, |
|
image_token="<image>", |
|
**kwargs, |
|
): |
|
self.patch_size = patch_size |
|
self.vision_feature_select_strategy = vision_feature_select_strategy |
|
self.image_token = image_token |
|
super().__init__(image_processor, tokenizer, chat_template=chat_template) |
|
self.patch_size = image_processor.patch_size |
|
self.grid_pinpoints = image_processor.image_grid_pinpoints |
|
self.max_size = image_processor.size |
|
self.process_image_mode = image_processor.process_image_mode |
|
|
|
def __call__( |
|
self, |
|
images: ImageInput = None, |
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, |
|
audio=None, |
|
videos=None, |
|
**kwargs, |
|
) -> BatchFeature: |
|
""" |
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` |
|
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode |
|
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to |
|
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring |
|
of the above two methods for more information. |
|
|
|
Args: |
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): |
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch |
|
tensor. Both channels-first and channels-last formats are supported. |
|
text (`str`, `List[str]`, `List[List[str]]`): |
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
- `'jax'`: Return JAX `jnp.ndarray` objects. |
|
|
|
Returns: |
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields: |
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. |
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when |
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not |
|
`None`). |
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. |
|
""" |
|
if images is None and text is None: |
|
raise ValueError("You have to specify at least one of `images` or `text`.") |
|
|
|
|
|
|
|
output_kwargs = self._merge_kwargs( |
|
MiniMaxVL01ProcessorKwargs, |
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs, |
|
**kwargs, |
|
) |
|
if images is not None: |
|
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"]) |
|
else: |
|
image_inputs = {} |
|
|
|
if isinstance(text, str): |
|
text = [text] |
|
elif not isinstance(text, list) and not isinstance(text[0], str): |
|
raise ValueError("Invalid input text. Please provide a string, or a list of strings") |
|
|
|
|
|
prompt_strings = text |
|
if image_inputs.get("pixel_values") is not None: |
|
if self.process_image_mode == 'anyres': |
|
if LEGACY_PROCESSING: |
|
pixel_values = image_inputs["pixel_values"] |
|
image_sizes = image_inputs["image_sizes"] |
|
|
|
|
|
|
|
|
|
all_image_tokens = [] |
|
for pixel_value, image_size in zip(pixel_values, image_sizes): |
|
height, width = image_size |
|
num_image_tokens = get_num_token(height, width, self.grid_pinpoints, self.patch_size) |
|
|
|
|
|
all_image_tokens.append(num_image_tokens) |
|
prompt_strings = [] |
|
image_index = 0 |
|
for sample in text: |
|
split_text = split_special_tokens(sample, [self.image_token]) |
|
final_text = '' |
|
for i, _sample in enumerate(split_text): |
|
if _sample == self.image_token: |
|
final_text += _sample * all_image_tokens[image_index] |
|
image_index += 1 |
|
else: |
|
final_text += _sample |
|
|
|
prompt_strings.append(final_text) |
|
elif self.process_image_mode == 'resize': |
|
pixel_values = image_inputs["pixel_values"] |
|
|
|
|
|
|
|
|
|
all_image_tokens = [] |
|
for pixel_value in pixel_values: |
|
height, width = get_image_size(to_numpy_array(pixel_value)) |
|
all_image_tokens.append(int(height*width/self.patch_size**2)) |
|
|
|
prompt_strings = [] |
|
image_index = 0 |
|
for sample in text: |
|
split_text = split_special_tokens(sample, [self.image_token]) |
|
final_text = '' |
|
for i, _sample in enumerate(split_text): |
|
if _sample == self.image_token: |
|
final_text += _sample * all_image_tokens[image_index] |
|
image_index += 1 |
|
else: |
|
final_text += _sample |
|
|
|
prompt_strings.append(final_text) |
|
else: |
|
|
|
if self.patch_size is not None: |
|
|
|
pixel_values = image_inputs["pixel_values"] |
|
|
|
|
|
|
|
|
|
all_image_tokens = [] |
|
for pixel_value in pixel_values: |
|
height, width = get_image_size(to_numpy_array(pixel_value)) |
|
new_width, new_height = get_hw_multiple_of((width, height), self.patch_size, self.max_size) |
|
num_image_tokens = (new_height // self.patch_size) * (new_width // self.patch_size) |
|
|
|
|
|
all_image_tokens.append(num_image_tokens) |
|
|
|
prompt_strings = [] |
|
image_index = 0 |
|
for sample in text: |
|
split_text = split_special_tokens(sample, [self.image_token]) |
|
final_text = '' |
|
for i, _sample in enumerate(split_text): |
|
if _sample == self.image_token: |
|
final_text += _sample * all_image_tokens[image_index] |
|
image_index += 1 |
|
else: |
|
final_text += _sample |
|
|
|
prompt_strings.append(final_text) |
|
else: |
|
logger.warning_once( |
|
"Expanding inputs for image tokens in MiniMaxVL01 should be done in processing. " |
|
"Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly " |
|
"with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. " |
|
"Using processors without these attributes in the config is deprecated and will throw an error in v4.47." |
|
) |
|
raise ValueError( |
|
"You need to provide `patch_size` and `vision_feature_select_strategy` in the model's processing config to expand inputs for image tokens." |
|
) |
|
|
|
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"]) |
|
|
|
return CustomBatchFeature(data={**text_inputs, **image_inputs}) |
|
|
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to |
|
the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
|
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |
|
|