metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: meta-nllb-600m-mt-en-twi-v4
results: []
meta-nllb-600m-mt-en-twi-v4
This model is a fine-tuned version of facebook/nllb-200-distilled-600M on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5793
- Rouge1: 0.6092
- Bleu: 22.4778
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Bleu |
---|---|---|---|---|---|
No log | 1.0 | 480 | 4.1464 | 0.5420 | 15.3433 |
5.9598 | 2.0 | 960 | 1.8878 | 0.5603 | 16.8733 |
2.993 | 3.0 | 1440 | 0.7451 | 0.5753 | 18.6067 |
1.3619 | 4.0 | 1920 | 0.6291 | 0.5880 | 19.9709 |
0.888 | 5.0 | 2400 | 0.6059 | 0.5953 | 20.4567 |
0.7774 | 6.0 | 2880 | 0.5961 | 0.6000 | 21.1082 |
0.7358 | 7.0 | 3360 | 0.5907 | 0.6049 | 21.4798 |
0.6934 | 8.0 | 3840 | 0.5866 | 0.6068 | 21.6956 |
0.666 | 9.0 | 4320 | 0.5816 | 0.6058 | 21.8561 |
0.6533 | 10.0 | 4800 | 0.5799 | 0.6063 | 21.8737 |
0.6266 | 11.0 | 5280 | 0.5791 | 0.6078 | 22.1400 |
0.6063 | 12.0 | 5760 | 0.5792 | 0.6106 | 22.3387 |
0.6058 | 13.0 | 6240 | 0.5790 | 0.6072 | 22.2070 |
0.5786 | 14.0 | 6720 | 0.5777 | 0.6084 | 22.2723 |
0.5754 | 15.0 | 7200 | 0.5800 | 0.6079 | 22.2117 |
0.5707 | 16.0 | 7680 | 0.5784 | 0.6084 | 22.2791 |
0.557 | 17.0 | 8160 | 0.5790 | 0.6081 | 22.4436 |
0.5531 | 18.0 | 8640 | 0.5796 | 0.6097 | 22.5290 |
0.5464 | 19.0 | 9120 | 0.5797 | 0.6085 | 22.3927 |
0.5499 | 20.0 | 9600 | 0.5793 | 0.6092 | 22.4778 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.3.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1