|
--- |
|
library_name: transformers |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/nllb-200-distilled-600M |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
- bleu |
|
model-index: |
|
- name: meta-nllb-600m-mt-en-twi-v4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# meta-nllb-600m-mt-en-twi-v4 |
|
|
|
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5793 |
|
- Rouge1: 0.6092 |
|
- Bleu: 22.4778 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Bleu | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| |
|
| No log | 1.0 | 480 | 4.1464 | 0.5420 | 15.3433 | |
|
| 5.9598 | 2.0 | 960 | 1.8878 | 0.5603 | 16.8733 | |
|
| 2.993 | 3.0 | 1440 | 0.7451 | 0.5753 | 18.6067 | |
|
| 1.3619 | 4.0 | 1920 | 0.6291 | 0.5880 | 19.9709 | |
|
| 0.888 | 5.0 | 2400 | 0.6059 | 0.5953 | 20.4567 | |
|
| 0.7774 | 6.0 | 2880 | 0.5961 | 0.6000 | 21.1082 | |
|
| 0.7358 | 7.0 | 3360 | 0.5907 | 0.6049 | 21.4798 | |
|
| 0.6934 | 8.0 | 3840 | 0.5866 | 0.6068 | 21.6956 | |
|
| 0.666 | 9.0 | 4320 | 0.5816 | 0.6058 | 21.8561 | |
|
| 0.6533 | 10.0 | 4800 | 0.5799 | 0.6063 | 21.8737 | |
|
| 0.6266 | 11.0 | 5280 | 0.5791 | 0.6078 | 22.1400 | |
|
| 0.6063 | 12.0 | 5760 | 0.5792 | 0.6106 | 22.3387 | |
|
| 0.6058 | 13.0 | 6240 | 0.5790 | 0.6072 | 22.2070 | |
|
| 0.5786 | 14.0 | 6720 | 0.5777 | 0.6084 | 22.2723 | |
|
| 0.5754 | 15.0 | 7200 | 0.5800 | 0.6079 | 22.2117 | |
|
| 0.5707 | 16.0 | 7680 | 0.5784 | 0.6084 | 22.2791 | |
|
| 0.557 | 17.0 | 8160 | 0.5790 | 0.6081 | 22.4436 | |
|
| 0.5531 | 18.0 | 8640 | 0.5796 | 0.6097 | 22.5290 | |
|
| 0.5464 | 19.0 | 9120 | 0.5797 | 0.6085 | 22.3927 | |
|
| 0.5499 | 20.0 | 9600 | 0.5793 | 0.6092 | 22.4778 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|