|
--- |
|
tags: |
|
- regression |
|
- pytorch |
|
license: mit |
|
--- |
|
|
|
## Model Description |
|
|
|
`NumAdd-v2.0` is an optimized feed-forward neural network (FNN) in PyTorch for numerical sum prediction. |
|
**Architecture:** 2-input, 1-output, with two hidden layers (32, 64 neurons) and ReLU activations. |
|
**Parameters:** 2,273 trainable. |
|
**Precision:** Requires `torch.float64` (double precision). |
|
**Training Config:** Optimal batch size: 2048, Final tuning learning rate: 1.0e-12. |
|
|
|
## Evaluation |
|
|
|
Benchmarked on 120,000 samples across six input magnitude ranges. Metrics: MAE, MSE, RMSE, R2. |
|
|
|
| Range (Input Max) | MAE | MSE | RMSE | R2 | |
|
|-------------------|---------|----------|---------|---------| |
|
| 0-50 | 0.004 | 0.000 | 0.004 | 1.000 | |
|
| 51-500 | 0.003 | 0.000 | 0.004 | 1.000 | |
|
| 501-5000 | 0.004 | 0.000 | 0.004 | 1.000 | |
|
| 5001-50000 | 0.004 | 0.000 | 0.005 | 1.000 | |
|
| 50001-500000 | 0.010 | 0.001 | 0.028 | 1.000 | |
|
| 500001-50000000 | 0.706 | 6.333 | 2.517 | 1.000 | |
|
|
|
## Limitations |
|
|
|
Precision degrades for extremely large magnitude inputs (e.g., >500,000), indicated by increased MAE/MSE, although R2 remains high. |