Dataset1-ViT / README.md
Nicole-M's picture
VIT-fineTuned
99771bd verified
metadata
base_model: VIT
tags:
  - image-classification
  - breast cancer
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: vit
    results: []

vit

This model is a fine-tuned version of VIT on the Mammogram V1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1157
  • Accuracy: 0.9625
  • Precision: 0.9745
  • Recall: 0.9625
  • F1: 0.9682

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.4204 1.0 1112 0.1572 0.9797 0.9740 0.9797 0.9767
0.3987 2.0 2224 0.2308 0.9253 0.9745 0.9253 0.9482
0.2347 3.0 3336 0.1360 0.9516 0.9737 0.9516 0.9622
0.1283 4.0 4448 0.1255 0.9564 0.9743 0.9564 0.9649
0.1304 5.0 5560 0.1157 0.9625 0.9745 0.9625 0.9682

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1