metadata
license: mit
datasets:
- muse-bench/MUSE-Books
language:
- en
base_model:
- muse-bench/MUSE-books_target
pipeline_tag: text-generation
library_name: transformers
tags:
- unlearn
- machine-unlearning
- llm-unlearning
- data-privacy
- large-language-models
- trustworthy-ai
- trustworthy-machine-learning
- language-model
SimNPO-Unlearned Model on Task "MUSE - News"
Model Details
- Unlearning:
- Task: 🤗datasets/muse-bench/MUSE-Books
- Method: SimNPO
- Origin Model: 🤗muse-bench/MUSE-books_target
- Code Base: github.com/OPTML-Group/Unlearn-Simple
- Research Paper: "Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning"
Unlearning Algorithm
This model uses the SimNPO
unlearning algorithm with the following optimization objective:
Unlearning hyper-parameters:
- Learning Rate:
1e-5
- beta:
0.7
- lambda:
1.0
- gamma:
0.0
Loading the Model
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("OPTML-Group/SimNPO-MUSE-Books-iclm-7b", torch_dtype=torch.bfloat16, device_map='auto')
Evaluation Results
VerbMem Df | KnowMem Df | PrivLeak | KnowMem Dr | |
---|---|---|---|---|
Origin | 99.56 | 58.32 | -56.32 | 67.01 |
Retrain | 14.30 | 28.90 | 0.00 | 74.50 |
NPO | 0.00 | 0.00 | -31.17 | 23.71 |
SimNPO | 0.00 | 0.00 | -19.82 | 48.27 |
Citation
If you use this model in your research, please cite:
@article{fan2024simplicity,
title={Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning},
author={Fan, Chongyu and Liu, Jiancheng and Lin, Licong and Jia, Jinghan and Zhang, Ruiqi and Mei, Song and Liu, Sijia},
journal={arXiv preprint arXiv:2410.07163},
year={2024}
}
Reporting Issues
Reporting issues with the model: github.com/OPTML-Group/Unlearn-Simple