metadata
license: mit
datasets:
- cais/wmdp
language:
- en
base_model:
- HuggingFaceH4/zephyr-7b-beta
pipeline_tag: text-generation
library_name: transformers
tags:
- unlearn
- machine-unlearning
- llm-unlearning
- data-privacy
- large-language-models
- trustworthy-ai
- trustworthy-machine-learning
- language-model
SimNPO-Unlearned Model on Task "WMDP"
Model Details
- Unlearning:
- Task: 🤗datasets/cais/wmdp
- Method: SimNPO
- Origin Model: 🤗HuggingFaceH4/zephyr-7b-beta
- Code Base: github.com/OPTML-Group/Unlearn-Simple
- Research Paper: "Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning"
Unlearning Algorithm
This model uses the SimNPO
unlearning algorithm with the following optimization objective:
Unlearning hyper-parameters:
- Learning Rate:
4e-6
- beta:
5.5
- lambda:
5.0
- gamma:
0.0
Loading the Model
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("OPTML-Group/SimNPO-WMDP-zephyr-7b-beta", use_flash_attention_2=True, torch_dtype=torch.bfloat16, trust_remote_code=True)
Evaluation Results
1 - AccBio | 1 - AccCyber | MMLU | |
---|---|---|---|
Origin | 0.352 | 0.608 | 0.585 |
NPO | 0.581 | 0.616 | 0.476 |
SimNPO | 0.584 | 0.678 | 0.471 |
Citation
If you use this model in your research, please cite:
@article{fan2024simplicity,
title={Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning},
author={Fan, Chongyu and Liu, Jiancheng and Lin, Licong and Jia, Jinghan and Zhang, Ruiqi and Mei, Song and Liu, Sijia},
journal={arXiv preprint arXiv:2410.07163},
year={2024}
}
Reporting Issues
Reporting issues with the model: github.com/OPTML-Group/Unlearn-Simple