|
--- |
|
license: mit |
|
datasets: |
|
- cais/wmdp |
|
language: |
|
- en |
|
base_model: |
|
- HuggingFaceH4/zephyr-7b-beta |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
tags: |
|
- unlearn |
|
- machine-unlearning |
|
- llm-unlearning |
|
- data-privacy |
|
- large-language-models |
|
- trustworthy-ai |
|
- trustworthy-machine-learning |
|
- language-model |
|
--- |
|
|
|
# SimNPO-Unlearned Model on Task "WMDP" |
|
|
|
## Model Details |
|
|
|
- **Unlearning**: |
|
- **Task**: [🤗datasets/cais/wmdp](https://huggingface.co/datasets/cais/wmdp) |
|
- **Method**: [SimNPO](https://arxiv.org/abs/2410.07163) |
|
- **Origin Model**: [🤗HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) |
|
- **Code Base**: [github.com/OPTML-Group/Unlearn-Simple](https://github.com/OPTML-Group/Unlearn-Simple) |
|
- **Research Paper**: ["Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning"](https://arxiv.org/abs/2410.07163) |
|
|
|
## Unlearning Algorithm |
|
|
|
This model uses the `SimNPO` unlearning algorithm with the following optimization objective: |
|
$$\ell_{SimNPO}(\mathbf{\theta}) = \mathbb{E}_{(x, y) \in \mathcal{D}_f}\left[-\frac{2}{\beta}\log\sigma\left(-\frac{\beta}{|y|}\log\pi_{\mathbf{\theta}}(y|x) - \gamma\right)\right] + \lambda \mathbb{E}_{(x, y) \in \mathcal{D}_r}[-\log\pi_{\mathbf{\theta}} (y|x)]$$ |
|
Unlearning hyper-parameters: |
|
- Learning Rate: `4e-6` |
|
- beta: `5.5` |
|
- lambda: `5.0` |
|
- gamma: `0.0` |
|
|
|
## Loading the Model |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
model = AutoModelForCausalLM.from_pretrained("OPTML-Group/SimNPO-WMDP-zephyr-7b-beta", use_flash_attention_2=True, torch_dtype=torch.bfloat16, trust_remote_code=True) |
|
``` |
|
|
|
## Evaluation Results |
|
||1 - AccBio|1 - AccCyber|MMLU| |
|
|---|---|---|---| |
|
|Origin|0.352|0.608|0.585| |
|
|NPO|0.581|0.616|0.476| |
|
|**SimNPO**|0.584|0.678|0.471| |
|
|
|
## Citation |
|
|
|
If you use this model in your research, please cite: |
|
``` |
|
@article{fan2024simplicity, |
|
title={Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning}, |
|
author={Fan, Chongyu and Liu, Jiancheng and Lin, Licong and Jia, Jinghan and Zhang, Ruiqi and Mei, Song and Liu, Sijia}, |
|
journal={arXiv preprint arXiv:2410.07163}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
## Reporting Issues |
|
|
|
Reporting issues with the model: [github.com/OPTML-Group/Unlearn-Simple](https://github.com/OPTML-Group/Unlearn-Simple) |