ljcc's picture
Update README.md
feb05ea verified
---
license: mit
datasets:
- cais/wmdp
language:
- en
base_model:
- HuggingFaceH4/zephyr-7b-beta
pipeline_tag: text-generation
library_name: transformers
tags:
- unlearn
- machine-unlearning
- llm-unlearning
- data-privacy
- large-language-models
- trustworthy-ai
- trustworthy-machine-learning
- language-model
---
# SimNPO-Unlearned Model on Task "WMDP"
## Model Details
- **Unlearning**:
- **Task**: [🤗datasets/cais/wmdp](https://huggingface.co/datasets/cais/wmdp)
- **Method**: [SimNPO](https://arxiv.org/abs/2410.07163)
- **Origin Model**: [🤗HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)
- **Code Base**: [github.com/OPTML-Group/Unlearn-Simple](https://github.com/OPTML-Group/Unlearn-Simple)
- **Research Paper**: ["Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning"](https://arxiv.org/abs/2410.07163)
## Unlearning Algorithm
This model uses the `SimNPO` unlearning algorithm with the following optimization objective:
$$\ell_{SimNPO}(\mathbf{\theta}) = \mathbb{E}_{(x, y) \in \mathcal{D}_f}\left[-\frac{2}{\beta}\log\sigma\left(-\frac{\beta}{|y|}\log\pi_{\mathbf{\theta}}(y|x) - \gamma\right)\right] + \lambda \mathbb{E}_{(x, y) \in \mathcal{D}_r}[-\log\pi_{\mathbf{\theta}} (y|x)]$$
Unlearning hyper-parameters:
- Learning Rate: `4e-6`
- beta: `5.5`
- lambda: `5.0`
- gamma: `0.0`
## Loading the Model
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("OPTML-Group/SimNPO-WMDP-zephyr-7b-beta", use_flash_attention_2=True, torch_dtype=torch.bfloat16, trust_remote_code=True)
```
## Evaluation Results
||1 - AccBio|1 - AccCyber|MMLU|
|---|---|---|---|
|Origin|0.352|0.608|0.585|
|NPO|0.581|0.616|0.476|
|**SimNPO**|0.584|0.678|0.471|
## Citation
If you use this model in your research, please cite:
```
@article{fan2024simplicity,
title={Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning},
author={Fan, Chongyu and Liu, Jiancheng and Lin, Licong and Jia, Jinghan and Zhang, Ruiqi and Mei, Song and Liu, Sijia},
journal={arXiv preprint arXiv:2410.07163},
year={2024}
}
```
## Reporting Issues
Reporting issues with the model: [github.com/OPTML-Group/Unlearn-Simple](https://github.com/OPTML-Group/Unlearn-Simple)