|
--- |
|
language: |
|
- or |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
[](https://creativecommons.org/licenses/by-nc-sa/4.0/) |
|
|
|
## Model description |
|
|
|
odiagenAI-model-v0 is based on Llama-7b and finetuned with 52k Odia translated data from the open-source Stanford-Alpaca, resulting in good Odia instruction understanding and response generation capabilities. |
|
|
|
The code of Odia data generation and other detailed information can be found in our Github project repository: https://github.com/shantipriyap/OdiaGenAI. |
|
This repo contains a low-rank adapter for LLaMA-7b fit on the Stanford Alpaca dataset. |
|
|
|
|
|
|
|
## Training hyper-parameters |
|
| Parameter | Value | |
|
| ------ | ------ | |
|
| Batch size | 128 | |
|
| Learning rate | 3e-4 | |
|
| Epochs | 2 | |
|
|Cutoff length | 256 | |
|
|Weight_decay | 0.001 | |
|
|Warmup_rate | 0.1 | |
|
|LR_scheduler | linear | |
|
|Lora r | 16 | |
|
|Lora target modules | (q_proj, k_proj, v_proj, o_proj) | |
|
|
|
|
|
|
|
|
|
Model can be easily loaded with AutoModelForCausalLM. |
|
``` python |
|
|
|
import torch |
|
from peft import PeftModel |
|
import transformers |
|
|
|
assert ( |
|
"LlamaTokenizer" in transformers._import_structure["models.llama"] |
|
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" |
|
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") |
|
|
|
BASE_MODEL = "decapoda-research/llama-7b-hf" |
|
LORA_WEIGHTS = "OdiaGenAI/odiagenAI-model-v0" |
|
|
|
|
|
model = LlamaForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
load_in_8bit=False, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
model = PeftModel.from_pretrained( |
|
model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True |
|
) |
|
|
|
def generate_prompt(instruction, input=None): |
|
if input: |
|
return f"""ନିମ୍ନରେ ଏକ ନିର୍ଦ୍ଦେଶନାମା ଯାହାକି ଏକ କାର୍ଯ୍ୟକୁ ବର୍ଣ୍ଣନା କରେ, ଏକ ଇନପୁଟ୍ ସହିତ ଯୋଡି ଯାହା ପରବର୍ତ୍ତୀ ପ୍ରସଙ୍ଗ ପ୍ରଦାନ କରେ | ଏକ ପ୍ରତିକ୍ରିୟା ଲେଖନ୍ତୁ ଯାହା ଅନୁରୋଧକୁ ସଠିକ୍ ଭାବରେ ସମାପ୍ତ କରେ | |
|
### ନିର୍ଦ୍ଦେଶ: |
|
{instruction} |
|
### ଇନପୁଟ୍: |
|
{input} |
|
### ପ୍ରତିକ୍ରିୟା:""" |
|
else: |
|
return f"""ନିମ୍ନରେ ଏକ ନିର୍ଦ୍ଦେଶ ଯାହାକି ଏକ କାର୍ଯ୍ୟକୁ ବର୍ଣ୍ଣନା କରେ | ଏକ ପ୍ରତିକ୍ରିୟା ଲେଖନ୍ତୁ ଯାହା ଅନୁରୋଧକୁ ସଠିକ୍ ଭାବରେ ସମାପ୍ତ କରେ | |
|
### ନିର୍ଦ୍ଦେଶ: |
|
{instruction} |
|
### ପ୍ରତିକ୍ରିୟା:""" |
|
|
|
prompt = generate_prompt(instruction, input) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to(device) |
|
generation_config = GenerationConfig( |
|
temperature=0.1, |
|
top_p=0.75, |
|
top_k=40, |
|
num_beams=4, |
|
**kwargs, |
|
) |
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=128, |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s) |
|
print(output.split("### Response:")[1].strip()) |
|
|
|
|
|
``` |
|
|
|
|
|
Instructions for running it can be found at https://github.com/shantipriyap/OdiaGenAI. |
|
|
|
|
|
|