netapy's picture
Update README.md
36b5038 verified
|
raw
history blame
18.3 kB
metadata
tags:
  - mteb
model-index:
  - name: Solon-embeddings-large-0.1
    results:
      - task:
          type: Clustering
        dataset:
          type: lyon-nlp/alloprof
          name: MTEB AlloProfClusteringP2P
          config: default
          split: test
          revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
        metrics:
          - type: v_measure
            value: 64.16942168287153
      - task:
          type: Clustering
        dataset:
          type: lyon-nlp/alloprof
          name: MTEB AlloProfClusteringS2S
          config: default
          split: test
          revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
        metrics:
          - type: v_measure
            value: 38.17076313383054
      - task:
          type: Reranking
        dataset:
          type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
          name: MTEB AlloprofReranking
          config: default
          split: test
          revision: 666fdacebe0291776e86f29345663dfaf80a0db9
        metrics:
          - type: map
            value: 64.8770878097632
          - type: mrr
            value: 66.39132423169396
      - task:
          type: Retrieval
        dataset:
          type: lyon-nlp/alloprof
          name: MTEB AlloprofRetrieval
          config: default
          split: test
          revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
        metrics:
          - type: map_at_1
            value: 29.62
          - type: map_at_10
            value: 40.963
          - type: map_at_100
            value: 41.894
          - type: map_at_1000
            value: 41.939
          - type: map_at_3
            value: 37.708999999999996
          - type: map_at_5
            value: 39.696999999999996
          - type: mrr_at_1
            value: 29.62
          - type: mrr_at_10
            value: 40.963
          - type: mrr_at_100
            value: 41.894
          - type: mrr_at_1000
            value: 41.939
          - type: mrr_at_3
            value: 37.708999999999996
          - type: mrr_at_5
            value: 39.696999999999996
          - type: ndcg_at_1
            value: 29.62
          - type: ndcg_at_10
            value: 46.942
          - type: ndcg_at_100
            value: 51.629999999999995
          - type: ndcg_at_1000
            value: 52.927
          - type: ndcg_at_3
            value: 40.333999999999996
          - type: ndcg_at_5
            value: 43.922
          - type: precision_at_1
            value: 29.62
          - type: precision_at_10
            value: 6.589
          - type: precision_at_100
            value: 0.882
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 15.976
          - type: precision_at_5
            value: 11.33
          - type: recall_at_1
            value: 29.62
          - type: recall_at_10
            value: 65.889
          - type: recall_at_100
            value: 88.212
          - type: recall_at_1000
            value: 98.575
          - type: recall_at_3
            value: 47.927
          - type: recall_at_5
            value: 56.64900000000001
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (fr)
          config: fr
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 42.077999999999996
          - type: f1
            value: 40.64511241732637
      - task:
          type: Retrieval
        dataset:
          type: maastrichtlawtech/bsard
          name: MTEB BSARDRetrieval
          config: default
          split: test
          revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
        metrics:
          - type: map_at_1
            value: 0.901
          - type: map_at_10
            value: 1.524
          - type: map_at_100
            value: 1.833
          - type: map_at_1000
            value: 1.916
          - type: map_at_3
            value: 1.276
          - type: map_at_5
            value: 1.276
          - type: mrr_at_1
            value: 0.901
          - type: mrr_at_10
            value: 1.524
          - type: mrr_at_100
            value: 1.833
          - type: mrr_at_1000
            value: 1.916
          - type: mrr_at_3
            value: 1.276
          - type: mrr_at_5
            value: 1.276
          - type: ndcg_at_1
            value: 0.901
          - type: ndcg_at_10
            value: 2.085
          - type: ndcg_at_100
            value: 3.805
          - type: ndcg_at_1000
            value: 6.704000000000001
          - type: ndcg_at_3
            value: 1.41
          - type: ndcg_at_5
            value: 1.41
          - type: precision_at_1
            value: 0.901
          - type: precision_at_10
            value: 0.40499999999999997
          - type: precision_at_100
            value: 0.126
          - type: precision_at_1000
            value: 0.037
          - type: precision_at_3
            value: 0.601
          - type: precision_at_5
            value: 0.36
          - type: recall_at_1
            value: 0.901
          - type: recall_at_10
            value: 4.054
          - type: recall_at_100
            value: 12.613
          - type: recall_at_1000
            value: 36.937
          - type: recall_at_3
            value: 1.802
          - type: recall_at_5
            value: 1.802
      - task:
          type: BitextMining
        dataset:
          type: rbawden/DiaBLa
          name: MTEB DiaBLaBitextMining (fr-en)
          config: fr-en
          split: test
          revision: 5345895c56a601afe1a98519ce3199be60a27dba
        metrics:
          - type: accuracy
            value: 88.90048712595686
          - type: f1
            value: 86.94952864886115
          - type: precision
            value: 86.20344379175826
          - type: recall
            value: 88.90048712595686
      - task:
          type: Clustering
        dataset:
          type: lyon-nlp/clustering-hal-s2s
          name: MTEB HALClusteringS2S
          config: default
          split: test
          revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
        metrics:
          - type: v_measure
            value: 24.087988843991155
      - task:
          type: Clustering
        dataset:
          type: mlsum
          name: MTEB MLSUMClusteringP2P
          config: default
          split: test
          revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
        metrics:
          - type: v_measure
            value: 43.79603865728535
      - task:
          type: Clustering
        dataset:
          type: mlsum
          name: MTEB MLSUMClusteringS2S
          config: default
          split: test
          revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
        metrics:
          - type: v_measure
            value: 37.746550373003
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (fr)
          config: fr
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 89.26088318196052
          - type: f1
            value: 88.95811185929033
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (fr)
          config: fr
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 68.55308487316003
          - type: f1
            value: 48.2936682439785
      - task:
          type: Classification
        dataset:
          type: masakhane/masakhanews
          name: MTEB MasakhaNEWSClassification (fra)
          config: fra
          split: test
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
        metrics:
          - type: accuracy
            value: 81.51658767772511
          - type: f1
            value: 77.695234448912
      - task:
          type: Clustering
        dataset:
          type: masakhane/masakhanews
          name: MTEB MasakhaNEWSClusteringP2P (fra)
          config: fra
          split: test
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
        metrics:
          - type: v_measure
            value: 40.80377094681114
      - task:
          type: Clustering
        dataset:
          type: masakhane/masakhanews
          name: MTEB MasakhaNEWSClusteringS2S (fra)
          config: fra
          split: test
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
        metrics:
          - type: v_measure
            value: 28.79703837416241
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fr)
          config: fr
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 67.40080699394755
          - type: f1
            value: 65.60793135686376
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fr)
          config: fr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.29455279085406
          - type: f1
            value: 70.80876673828983
      - task:
          type: Retrieval
        dataset:
          type: jinaai/mintakaqa
          name: MTEB MintakaRetrieval (fr)
          config: fr
          split: test
          revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
        metrics:
          - type: map_at_1
            value: 16.625999999999998
          - type: map_at_10
            value: 25.224999999999998
          - type: map_at_100
            value: 26.291999999999998
          - type: map_at_1000
            value: 26.395000000000003
          - type: map_at_3
            value: 22.378999999999998
          - type: map_at_5
            value: 24.009
          - type: mrr_at_1
            value: 16.625999999999998
          - type: mrr_at_10
            value: 25.224999999999998
          - type: mrr_at_100
            value: 26.291999999999998
          - type: mrr_at_1000
            value: 26.395000000000003
          - type: mrr_at_3
            value: 22.378999999999998
          - type: mrr_at_5
            value: 24.009
          - type: ndcg_at_1
            value: 16.625999999999998
          - type: ndcg_at_10
            value: 30.074
          - type: ndcg_at_100
            value: 35.683
          - type: ndcg_at_1000
            value: 38.714999999999996
          - type: ndcg_at_3
            value: 24.188000000000002
          - type: ndcg_at_5
            value: 27.124
          - type: precision_at_1
            value: 16.625999999999998
          - type: precision_at_10
            value: 4.566
          - type: precision_at_100
            value: 0.729
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 9.801
          - type: precision_at_5
            value: 7.305000000000001
          - type: recall_at_1
            value: 16.625999999999998
          - type: recall_at_10
            value: 45.659
          - type: recall_at_100
            value: 72.85000000000001
          - type: recall_at_1000
            value: 97.42
          - type: recall_at_3
            value: 29.402
          - type: recall_at_5
            value: 36.527
      - task:
          type: PairClassification
        dataset:
          type: paws-x
          name: MTEB PawsX (fr)
          config: fr
          split: test
          revision: 8a04d940a42cd40658986fdd8e3da561533a3646
        metrics:
          - type: cos_sim_accuracy
            value: 60.6
          - type: cos_sim_ap
            value: 60.18915797975459
          - type: cos_sim_f1
            value: 62.491349480968864
          - type: cos_sim_precision
            value: 45.44539506794162
          - type: cos_sim_recall
            value: 100
          - type: dot_accuracy
            value: 60.6
          - type: dot_ap
            value: 60.091135216056024
          - type: dot_f1
            value: 62.491349480968864
          - type: dot_precision
            value: 45.44539506794162
          - type: dot_recall
            value: 100
          - type: euclidean_accuracy
            value: 60.6
          - type: euclidean_ap
            value: 60.18915797975459
          - type: euclidean_f1
            value: 62.491349480968864
          - type: euclidean_precision
            value: 45.44539506794162
          - type: euclidean_recall
            value: 100
          - type: manhattan_accuracy
            value: 60.650000000000006
          - type: manhattan_ap
            value: 60.2082343915352
          - type: manhattan_f1
            value: 62.491349480968864
          - type: manhattan_precision
            value: 45.44539506794162
          - type: manhattan_recall
            value: 100
          - type: max_accuracy
            value: 60.650000000000006
          - type: max_ap
            value: 60.2082343915352
          - type: max_f1
            value: 62.491349480968864
      - task:
          type: STS
        dataset:
          type: Lajavaness/SICK-fr
          name: MTEB SICKFr
          config: default
          split: test
          revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
        metrics:
          - type: cos_sim_pearson
            value: 79.77067200230256
          - type: cos_sim_spearman
            value: 76.7445532523278
          - type: euclidean_pearson
            value: 76.34017074673956
          - type: euclidean_spearman
            value: 76.7453011027832
          - type: manhattan_pearson
            value: 76.19578084197778
          - type: manhattan_spearman
            value: 76.56293456459228
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr)
          config: fr
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 81.2564160237984
          - type: cos_sim_spearman
            value: 83.30552085410882
          - type: euclidean_pearson
            value: 82.00494560507786
          - type: euclidean_spearman
            value: 83.30552085410882
          - type: manhattan_pearson
            value: 81.93132229157803
          - type: manhattan_spearman
            value: 83.04357992939353
      - task:
          type: STS
        dataset:
          type: stsb_multi_mt
          name: MTEB STSBenchmarkMultilingualSTS (fr)
          config: fr
          split: test
          revision: 93d57ef91790589e3ce9c365164337a8a78b7632
        metrics:
          - type: cos_sim_pearson
            value: 80.34931905288978
          - type: cos_sim_spearman
            value: 79.99372771100049
          - type: euclidean_pearson
            value: 78.37976845123443
          - type: euclidean_spearman
            value: 79.99452356550658
          - type: manhattan_pearson
            value: 78.24434042082316
          - type: manhattan_spearman
            value: 79.87248340061164
      - task:
          type: Summarization
        dataset:
          type: lyon-nlp/summarization-summeval-fr-p2p
          name: MTEB SummEvalFr
          config: default
          split: test
          revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
        metrics:
          - type: cos_sim_pearson
            value: 30.476001473421586
          - type: cos_sim_spearman
            value: 29.687350195905456
          - type: dot_pearson
            value: 30.476000875190685
          - type: dot_spearman
            value: 29.662224660056562
      - task:
          type: Reranking
        dataset:
          type: lyon-nlp/mteb-fr-reranking-syntec-s2p
          name: MTEB SyntecReranking
          config: default
          split: test
          revision: b205c5084a0934ce8af14338bf03feb19499c84d
        metrics:
          - type: map
            value: 88.28333333333333
          - type: mrr
            value: 88.28333333333333
      - task:
          type: Retrieval
        dataset:
          type: lyon-nlp/mteb-fr-retrieval-syntec-s2p
          name: MTEB SyntecRetrieval
          config: default
          split: test
          revision: 77f7e271bf4a92b24fce5119f3486b583ca016ff
        metrics:
          - type: map_at_1
            value: 69
          - type: map_at_10
            value: 79.906
          - type: map_at_100
            value: 79.982
          - type: map_at_1000
            value: 79.982
          - type: map_at_3
            value: 77.667
          - type: map_at_5
            value: 79.51700000000001
          - type: mrr_at_1
            value: 69
          - type: mrr_at_10
            value: 79.906
          - type: mrr_at_100
            value: 79.982
          - type: mrr_at_1000
            value: 79.982
          - type: mrr_at_3
            value: 77.667
          - type: mrr_at_5
            value: 79.51700000000001
          - type: ndcg_at_1
            value: 69
          - type: ndcg_at_10
            value: 84.60499999999999
          - type: ndcg_at_100
            value: 84.868
          - type: ndcg_at_1000
            value: 84.868
          - type: ndcg_at_3
            value: 80.333
          - type: ndcg_at_5
            value: 83.647
          - type: precision_at_1
            value: 69
          - type: precision_at_10
            value: 9.9
          - type: precision_at_100
            value: 1
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 29.333
          - type: precision_at_5
            value: 19.2
          - type: recall_at_1
            value: 69
          - type: recall_at_10
            value: 99
          - type: recall_at_100
            value: 100
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 88
          - type: recall_at_5
            value: 96
      - task:
          type: Retrieval
        dataset:
          type: jinaai/xpqa
          name: MTEB XPQARetrieval (fr)
          config: fr
          split: test
          revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
        metrics:
          - type: map_at_1
            value: 42.027
          - type: map_at_10
            value: 64.331
          - type: map_at_100
            value: 65.657
          - type: map_at_1000
            value: 65.7
          - type: map_at_3
            value: 57.967999999999996
          - type: map_at_5
            value: 62.33800000000001
          - type: mrr_at_1
            value: 65.688
          - type: mrr_at_10
            value: 72.263
          - type: mrr_at_100
            value: 72.679
          - type: mrr_at_1000
            value: 72.69099999999999
          - type: mrr_at_3
            value: 70.405
          - type: mrr_at_5
            value: 71.587
          - type: ndcg_at_1
            value: 65.688
          - type: ndcg_at_10
            value: 70.221
          - type: ndcg_at_100
            value: 74.457
          - type: ndcg_at_1000
            value: 75.178
          - type: ndcg_at_3
            value: 65.423
          - type: ndcg_at_5
            value: 67.05499999999999
          - type: precision_at_1
            value: 65.688
          - type: precision_at_10
            value: 16.208
          - type: precision_at_100
            value: 1.975
          - type: precision_at_1000
            value: 0.207
          - type: precision_at_3
            value: 39.831
          - type: precision_at_5
            value: 28.652
          - type: recall_at_1
            value: 42.027
          - type: recall_at_10
            value: 78.803
          - type: recall_at_100
            value: 95.051
          - type: recall_at_1000
            value: 99.75500000000001
          - type: recall_at_3
            value: 62.62799999999999
          - type: recall_at_5
            value: 70.975
license: mit
language:
  - fr

Solon Embeddings — large 0.1

SOTA Open source french embedding model.

Instructions :
Add "query : " before the query to retrieve to increase performance of retrieval.
No instructions needed for passages.

Model Mean Score
OrdalieTech/Solon-embeddings-large-0.1 0.7490
cohere/embed-multilingual-v3 0.7402
OrdalieTech/Solon-embeddings-base-0.1 0.7306
openai/ada-002 0.7290
cohere/embed-multilingual-light-v3 0.6945
antoinelouis/biencoder-camembert-base-mmarcoFR 0.6826
dangvantuan/sentence-camembert-large 0.6756
voyage/voyage-01 0.6753
intfloat/multilingual-e5-large 0.6660
intfloat/multilingual-e5-base 0.6597
Sbert/paraphrase-multilingual-mpnet-base-v2 0.5975
dangvantuan/sentence-camembert-base 0.5456
EuropeanParliament/eubert_embedding_v1 0.5063

These results have been obtained through 9 french benchmarks on a variety of text similarity tasks (classification, reranking, STS) :

  • AmazonReviewsClassification (MTEB)
  • MassiveIntentClassification (MTEB)
  • MassiveScenarioClassification (MTEB)
  • MTOPDomainClassification (MTEB)
  • MTOPIntentClassification (MTEB)
  • STS22 (MTEB)
  • MiraclFRRerank (Miracl)
  • OrdalieFRSTS (Ordalie)
  • OrdalieFRReranking (Ordalie)

We created OrdalieFRSTS and OrdalieFRReranking to enhance the benchmarking capabilities of French STS and reranking assessments.

(evaluation script available here : github.com/OrdalieTech/mteb)