metadata
language:
- en
base_model:
- unsloth/Llama-3.2-3B-Instruct
license: llama3.2
model-index:
- name: LLaMa-3.2-Instruct-JankMix-v0.2-SFT-3B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 62.92
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PJMixers-Dev/LLaMa-3.2-Instruct-JankMix-v0.2-SFT-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 23.34
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PJMixers-Dev/LLaMa-3.2-Instruct-JankMix-v0.2-SFT-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 11.33
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PJMixers-Dev/LLaMa-3.2-Instruct-JankMix-v0.2-SFT-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.02
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PJMixers-Dev/LLaMa-3.2-Instruct-JankMix-v0.2-SFT-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.87
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PJMixers-Dev/LLaMa-3.2-Instruct-JankMix-v0.2-SFT-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 23.5
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PJMixers-Dev/LLaMa-3.2-Instruct-JankMix-v0.2-SFT-3B
name: Open LLM Leaderboard
A much further trained version, this time done with full finetuning instead of DoRA. Similar ~50/50 mix of completion and instruct data.
Note: This likely has refusals like PJMixers-Dev/LLaMa-3.2-Instruct-JankMix-v0.1-SFT-3B since no focus was put on removing refusals. I'm working on a KTO DoRA to solve this, and possibly improve roleplay performance.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 21.50 |
IFEval (0-Shot) | 62.92 |
BBH (3-Shot) | 23.34 |
MATH Lvl 5 (4-Shot) | 11.33 |
GPQA (0-shot) | 3.02 |
MuSR (0-shot) | 4.87 |
MMLU-PRO (5-shot) | 23.50 |