|
--- |
|
datasets: |
|
- PKU-Alignment/PKU-SafeRLHF |
|
language: |
|
- en |
|
tags: |
|
- reinforcement-learning-from-human-feedback |
|
- reinforcement-learning |
|
- beaver |
|
- safety |
|
- llama |
|
- ai-safety |
|
- deepspeed |
|
- rlhf |
|
- alpaca |
|
library_name: safe-rlhf |
|
--- |
|
|
|
# 🦫 Beaver's Cost Model |
|
|
|
## Model Details |
|
|
|
The Beaver cost model is a preference model trained using the [PKU-SafeRLHF](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF) dataset. |
|
It can play a role in the safe RLHF algorithm, helping the Beaver model become more safe and harmless. |
|
|
|
- **Developed by:** the [PKU-Alignment](https://github.com/PKU-Alignment) Team. |
|
- **Model Type:** An auto-regressive language model based on the transformer architecture. |
|
- **License:** Non-commercial license. |
|
- **Fine-tuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca). |
|
|
|
## Model Sources |
|
|
|
- **Repository:** <https://github.com/PKU-Alignment/safe-rlhf> |
|
- **Beaver:** <https://huggingface.co/PKU-Alignment/beaver-7b-v3.0> |
|
- **Dataset:** <https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF> |
|
- **Reward Model:** <https://huggingface.co/PKU-Alignment/beaver-7b-v3.0-reward> |
|
- **Cost Model:** <https://huggingface.co/PKU-Alignment/beaver-7b-v3.0-cost> |
|
- **Dataset Paper:** <https://arxiv.org/abs/2307.04657> |
|
- **Paper:** <https://arxiv.org/abs/2310.12773> |
|
|
|
## How to Use the Cost Model |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer |
|
from safe_rlhf.models import AutoModelForScore |
|
|
|
model = AutoModelForScore.from_pretrained('PKU-Alignment/beaver-7b-v3.0-cost', torch_dtype=torch.bfloat16, device_map='auto') |
|
tokenizer = AutoTokenizer.from_pretrained('PKU-Alignment/beaver-7b-v3.0-cost') |
|
|
|
input = 'BEGINNING OF CONVERSATION: USER: hello ASSISTANT:Hello! How can I help you today?' |
|
|
|
input_ids = tokenizer(input, return_tensors='pt') |
|
output = model(**input_ids) |
|
print(output) |
|
|
|
# ScoreModelOutput( |
|
# scores=tensor([[[ 3.4844], |
|
# [ 0.9414], |
|
# [ 1.9766], |
|
# [ 0.9688], |
|
# [ 1.4219], |
|
# [ 0.5781], |
|
# [ 0.7500], |
|
# [ 0.3516], |
|
# [-0.2305], |
|
# [-0.6055], |
|
# [-1.0625], |
|
# [-1.1875], |
|
# [-0.5820], |
|
# [ 0.0182], |
|
# [-1.0000], |
|
# [ 0.1279], |
|
# [-0.5820], |
|
# [-0.3691], |
|
# [ 0.5430], |
|
# [-0.2266], |
|
# [ 0.6797], |
|
# [ 1.0938], |
|
# [ 0.7188], |
|
# [ 0.6797], |
|
# [ 0.3613], |
|
# [ 0.1416], |
|
# [ 0.4238], |
|
# [ 0.4023]]], grad_fn=<ToCopyBackward0>), |
|
# end_scores=tensor([[0.4023]], grad_fn=<ToCopyBackward0>), |
|
# last_hidden_state=tensor([[[-0.2832, -0.0139, -0.1904, ..., 0.4141, -0.5859, -1.2734], |
|
# [ 0.2168, -1.1953, -0.4707, ..., -0.0806, 0.2500, 0.6016], |
|
# [ 0.5078, 0.2334, 0.1348, ..., -0.1416, -0.1699, -0.3008], |
|
# ..., |
|
# [ 0.6328, -0.0108, -0.7188, ..., -0.8828, 0.2812, 0.5352], |
|
# [ 0.4434, 0.3281, -0.1245, ..., -0.7812, 0.7734, 0.8164], |
|
# [ 0.5078, 0.2637, 0.5508, ..., 0.3477, 1.5625, 0.5547]]], |
|
# dtype=torch.bfloat16, grad_fn=<ToCopyBackward0>), |
|
# end_last_hidden_state=tensor([[0.5078, 0.2637, 0.5508, ..., 0.3477, 1.5625, 0.5547]], |
|
# dtype=torch.bfloat16, grad_fn=<ToCopyBackward0>), |
|
# end_index=tensor([27]) |
|
# ) |
|
``` |
|
|