File size: 3,306 Bytes
e69c065 e729560 e69c065 8b1b45a e69c065 5631221 e69c065 70404a2 bd7010d e69c065 25dd93a e69c065 25dd93a e69c065 a68965c e69c065 ff970cc a68965c e69c065 6c3b041 6e9f802 25dd93a 6c3b041 54a9374 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
language:
- en
base_model:
- openai/clip-vit-large-patch14
tags:
- IQA
- computer_vision
- perceptual_tasks
- CLIP
- KonIQ-10k
---
**PerceptCLIP-IQA** is a model designed to predict **image quality assessment (IQA) score**. This is the official model from the paper:
📄 **["Don't Judge Before You CLIP: A Unified Approach for Perceptual Tasks"](https://arxiv.org/abs/2503.13260)**.
We apply **LoRA adaptation** on the **CLIP visual encoder** and add an **MLP head** for IQA score prediction. Our model achieves **state-of-the-art results** as described in our paper.
## Training Details
- *Dataset*: [KonIQ-10k](https://arxiv.org/pdf/1910.06180)
- *Architecture*: CLIP Vision Encoder (ViT-L/14) with *LoRA adaptation*
- *Loss Function*: Pearson correlation induced loss <img src="https://huggingface.co/PerceptCLIP/PerceptCLIP_IQA/resolve/main/loss_formula.png" width="220" style="vertical-align: middle;" />
- *Optimizer*: AdamW
- *Learning Rate*: 5e-05
- *Batch Size*: 32
## Installation & Requirements
You can set up the environment using environment.yml or manually install dependencies:
- python=3.9.15
- cudatoolkit=11.7
- torchvision=0.14.0
- transformers=4.45.2
- peft=0.14.0
- numpy=1.26.4
## Usage
To use the model for inference:
```python
from torchvision import transforms
import torch
from PIL import Image
from huggingface_hub import hf_hub_download
import importlib.util
import numpy as np
import random
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model class definition dynamically
class_path = hf_hub_download(repo_id="PerceptCLIP/PerceptCLIP_IQA", filename="modeling.py")
spec = importlib.util.spec_from_file_location("modeling", class_path)
modeling = importlib.util.module_from_spec(spec)
spec.loader.exec_module(modeling)
# initialize a model
ModelClass = modeling.clip_lora_model
model = ModelClass().to(device)
# Load pretrained model
model_path = hf_hub_download(repo_id="PerceptCLIP/PerceptCLIP_IQA", filename="perceptCLIP_IQA.pth")
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()
# Load an image
image = Image.open("image_path.jpg").convert("RGB")
# Preprocess and predict
def IQA_preprocess():
random.seed(3407)
transform = transforms.Compose([
transforms.Resize((512,384)),
transforms.RandomCrop(size=(224,224)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711))
])
return transform
batch = torch.stack([IQA_preprocess()(image) for _ in range(15)]).to(device) # Shape: (15, 3, 224, 224)
with torch.no_grad():
scores = model(batch).cpu().numpy()
iqa_score = np.mean(scores)
# maps the predicted score to [0,1] range
min_pred = -6.52
max_pred = 3.11
normalized_score = ((iqa_score - min_pred) / (max_pred - min_pred))
print(f"Predicted quality Score: {normalized_score:.4f}")
```
## Citation
If you use this model in your research, please cite:
```bibtex
@article{zalcher2025don,
title={Don't Judge Before You CLIP: A Unified Approach for Perceptual Tasks},
author={Zalcher, Amit and Wasserman, Navve and Beliy, Roman and Heinimann, Oliver and Irani, Michal},
journal={arXiv preprint arXiv:2503.13260},
year={2025}
} |