File size: 12,087 Bytes
84b3156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# coding=utf-8
from typing import List, Optional, Union

import torch
import torch.nn.functional as F
from torch import nn

from transformers.cache_utils import HybridCache, StaticCache
from transformers.generation import GenerationMixin
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
from transformers.processing_utils import Unpack
from transformers.utils import LossKwargs, can_return_tuple, logging
from .configuration_smallthinker import SmallThinkerConfig
from .modular_smallthinker import *

logger = logging.get_logger(__name__)


class SmallThinkerModel(SmallThinkerPreTrainedModel):
    def __init__(self, config: SmallThinkerConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [SmallThinkerDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = SmallThinkerRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = SmallThinkerRotaryEmbedding(config=config)
        self.gradient_checkpointing = False
        self.rope_layout = config.rope_layout
        self.config = config

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    @can_return_tuple
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_router_logits: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
    ) -> MoeModelOutputWithPast:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_router_logits = (
            output_router_logits if output_router_logits is not None else self.config.output_router_logits
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
        
        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if use_cache and past_key_values is None:
            batch_size, seq_len, _ = inputs_embeds.shape
            # NOTE: ideally, `HybridCache` should be initialized outside the model with `layer_device_map`
            if not hasattr(self.config, "sliding_window_layout") or self.config.sliding_window_layout is None or not any(self.config.sliding_window_layout):
                past_key_values = StaticCache(
                    self.config,
                    max_batch_size=batch_size,
                    max_cache_len=seq_len,
                    dtype=inputs_embeds.dtype,
                    device=self.device,
                )
            else:
                past_key_values = HybridCache(
                    self.config,
                    max_batch_size=batch_size,
                    max_cache_len=seq_len,
                    dtype=inputs_embeds.dtype,
                    device=self.device,
                )

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )
    
        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = create_causal_mask(
            config=self.config, 
            input_embeds=inputs_embeds, 
            attention_mask=attention_mask, 
            cache_position=cache_position, 
            past_key_values=past_key_values, 
            position_ids=position_ids,
        )
        if hasattr(self.config, "sliding_window_layout") and self.config.sliding_window_layout is not None and any(self.config.sliding_window_layout):
            swa_mask = create_sliding_window_causal_mask(
                config=self.config, 
                input_embeds=inputs_embeds, 
                attention_mask=attention_mask, 
                cache_position=cache_position, 
                past_key_values=past_key_values, 
                position_ids=position_ids,
            )

        hidden_states = inputs_embeds
        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_router_logits = () if output_router_logits else None

        for layer_idx, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if hasattr(self.config, "sliding_window_layout") and self.config.sliding_window_layout is not None:
                if self.config.sliding_window_layout[layer_idx] == 1:
                    layer_outputs = decoder_layer(
                        hidden_states,
                        attention_mask=swa_mask,
                        position_ids=position_ids,
                        past_key_value=past_key_values,
                        output_attentions=output_attentions,
                        output_router_logits=output_router_logits,
                        use_cache=use_cache,
                        cache_position=cache_position,
                        position_embeddings=position_embeddings if self.rope_layout[layer_idx] else None,
                        **flash_attn_kwargs,
                    )
                else:
                    layer_outputs = decoder_layer(
                        hidden_states,
                        attention_mask=causal_mask,
                        position_ids=position_ids,
                        past_key_value=past_key_values,
                        output_attentions=output_attentions,
                        output_router_logits=output_router_logits,
                        use_cache=use_cache,
                        cache_position=cache_position,
                        position_embeddings=position_embeddings if self.rope_layout[layer_idx] else None,
                        **flash_attn_kwargs,
                    )
            else:
                layer_outputs = decoder_layer(
                        hidden_states,
                        attention_mask=causal_mask,
                        position_ids=position_ids,
                        past_key_value=past_key_values,
                        output_attentions=output_attentions,
                        output_router_logits=output_router_logits,
                        use_cache=use_cache,
                        cache_position=cache_position,
                        position_embeddings=position_embeddings if self.rope_layout[layer_idx] else None,
                        **flash_attn_kwargs,
                    )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

            if output_router_logits:
                all_router_logits += (layer_outputs[-1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        return MoeModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values if use_cache else None,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...

class SmallThinkerForCausalLM(SmallThinkerPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]
    def __init__(self, config):
        super().__init__(config)
        self.model = SmallThinkerModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @can_return_tuple
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_router_logits: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **kwargs: Unpack[KwargsForCausalLM],
    ) -> MoeCausalLMOutputWithPast:

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_router_logits = (
            output_router_logits if output_router_logits is not None else self.config.output_router_logits
        )

        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs: MoeModelOutputWithPast = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_router_logits=output_router_logits,
            cache_position=cache_position,
            **kwargs,
        )

        hidden_states = outputs.last_hidden_state
        # Only compute necessary logits, and do not upcast them to float
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(hidden_states[:, slice_indices, :])

        return MoeCausalLMOutputWithPast(
            loss=None,
            aux_loss=None,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            router_logits=outputs.router_logits,
        )

__all__ = [
    "SmallThinkerForCausalLM",
    "SmallThinkerModel",
    "SmallThinkerPreTrainedModel"
]