yixinsong commited on
Commit
c4c7dfc
·
verified ·
1 Parent(s): 84b3156

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -3
README.md CHANGED
@@ -1,3 +1,85 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ ---
7
+ ## Introduction
8
+
9
+ SmallThinker is a family of **on-device native** Mixture-of-Experts (MoE) language models, co-developed by the **IPADS Lab at Shanghai Jiao Tong University** and **Zenergize**. Designed from the ground up for resource-constrained environments, SmallThinker brings powerful, private, and low-latency AI directly to your personal devices, without relying on the cloud.
10
+
11
+ ## Performance
12
+ | Model | MMLU | GPQA-diamond | GSM8K | MATH-500 | IFEVAL | LIVEBENCH | HUMANEVAL | Average |
13
+ | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
14
+ | `SmallThinker-4BA0.6B-Instruct` | 66.11 | 31.31 | 80.02 | 60.60 | 69.69 | 42.20 | 82.32 | 61.75 |
15
+ | `qwen3-0.6b` | 43.31 | 26.77 | 62.85 | 45.6 | 58.41 | 23.1 | 31.71 | 41.67 |
16
+ | `qwen3-1.7b` | 64.19 | 27.78 | 81.88 | 63.6 | 69.50 | 35.60 | 61.59 | 57.73 |
17
+ | `gemma3nE2b` | 63.04 | 20.2 | 82.34 | 58.6 | 73.2 | 27.90 | 64.63 | 55.70 |
18
+ | `Llama3.2-3B` | 64.15 | 24.24 | 75.51 | 40 | 71.16 | 15.30 | 55.49 | 49.41 |
19
+ | `Llama-3.2-1B-Instruct` | 45.66 | 22.73 | 1.67 | 14.4 | 48.06 | 13.50 | 37.20 | 26.17 |
20
+ ## Model Card
21
+
22
+ <div align="center">
23
+
24
+ | | |
25
+ |:---:|:---:|
26
+ | **Architecture** | Mixture-of-Experts (MoE) |
27
+ | **Total Parameters** | 4B |
28
+ | **Activated Parameters** | 0.6B |
29
+ | **Number of Layers** | 32 |
30
+ | **Attention Hidden Dimension** | 1536 |
31
+ | **MoE Hidden Dimension** (per Expert) | 1408 |
32
+ | **Number of Attention Heads** | 12 |
33
+ | **Number of Experts** | 32 |
34
+ | **Selected Experts per Token** | 4 |
35
+ | **Vocabulary Size** | 151,936 |
36
+ | **Context Length** | 32K |
37
+ | **Attention Mechanism** | GQA |
38
+ | **Activation Function** | ReGLU |
39
+ </div>
40
+
41
+ ## How to Run
42
+
43
+ ### Transformers
44
+
45
+ The latest version of `transformers` is recommended or `transformers>=4.52.4` is required.
46
+ The following contains a code snippet illustrating how to use the model generate content based on given inputs.
47
+
48
+ ```python
49
+ from transformers import AutoModelForCausalLM, AutoTokenizer
50
+ import torch
51
+
52
+ path = "PowerInfer/SmallThinker-4BA0.6B-Instruct"
53
+ device = "cuda"
54
+
55
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
56
+ model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
57
+
58
+ messages = [
59
+ {"role": "user", "content": "Give me a short introduction to large language model."},
60
+ ]
61
+ model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(device)
62
+
63
+ model_outputs = model.generate(
64
+ model_inputs,
65
+ do_sample=True,
66
+ max_new_tokens=1024
67
+ )
68
+
69
+ output_token_ids = [
70
+ model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
71
+ ]
72
+
73
+ responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
74
+ print(responses)
75
+
76
+ ```
77
+
78
+ ### ModelScope
79
+
80
+ `ModelScope` adopts Python API similar to (though not entirely identical to) `Transformers`. For basic usage, simply modify the first line of the above code as follows:
81
+
82
+ ```python
83
+ from modelscope import AutoModelForCausalLM, AutoTokenizer
84
+ ```
85
+