|
--- |
|
license: apache-2.0 |
|
base_model: google/long-t5-tglobal-base |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- gov_report_summarization_dataset |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: long-t5-tglobal-base-finetuned-govReport-4096 |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: gov_report_summarization_dataset |
|
type: gov_report_summarization_dataset |
|
config: document |
|
split: validation |
|
args: document |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.0463 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# long-t5-tglobal-base-finetuned-govReport-4096 |
|
|
|
This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on the gov_report_summarization_dataset dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3116 |
|
- Rouge1: 0.0463 |
|
- Rouge2: 0.0231 |
|
- Rougel: 0.039 |
|
- Rougelsum: 0.0436 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 14.9489 | 1.0 | 25 | 2.8019 | 0.0416 | 0.0156 | 0.0343 | 0.0383 | |
|
| 3.9751 | 2.0 | 50 | 2.0899 | 0.0396 | 0.0145 | 0.0332 | 0.0367 | |
|
| 3.0361 | 3.0 | 75 | 1.4337 | 0.0395 | 0.0138 | 0.033 | 0.0366 | |
|
| 1.8477 | 4.0 | 100 | 1.3654 | 0.0406 | 0.0157 | 0.0342 | 0.0378 | |
|
| 1.6709 | 5.0 | 125 | 1.3355 | 0.0419 | 0.0171 | 0.036 | 0.0394 | |
|
| 1.5673 | 6.0 | 150 | 1.3229 | 0.0446 | 0.022 | 0.0383 | 0.0423 | |
|
| 1.5567 | 7.0 | 175 | 1.3181 | 0.047 | 0.0233 | 0.0393 | 0.0441 | |
|
| 1.5066 | 8.0 | 200 | 1.3135 | 0.0467 | 0.0233 | 0.0394 | 0.0441 | |
|
| 1.515 | 9.0 | 225 | 1.3117 | 0.0462 | 0.0231 | 0.0389 | 0.0436 | |
|
| 1.4868 | 10.0 | 250 | 1.3116 | 0.0463 | 0.0231 | 0.039 | 0.0436 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.0 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.15.1 |
|
|