en_grantss / README.md
RaThorat's picture
Update README.md
446380c
|
raw
history blame
1.69 kB
metadata
tags:
  - spacy
  - token-classification
language:
  - en
model-index:
  - name: en_grantss
    results:
      - task:
          name: NER
          type: token-classification
        metrics:
          - name: NER Precision
            type: precision
            value: 0.769098972
          - name: NER Recall
            type: recall
            value: 0.6617812852
          - name: NER F Score
            type: f_score
            value: 0.7114156528

Introduction

Three variants of the model is built with Spacy3 for grant applications. A simple named entity recognition custom model from scratch with annotation tool prodi.gy. Github info: https://github.com/RaThorat/ner_model_prodigy The most general model is 'en_grantss'. The model en_ncv is more suitable to extract entities from narrative CV's. The model en_grant is the first model in the series.

Feature Description
Name en_grantss
Version 0.0.0
spaCy >=3.4.3,<3.5.0
Default Pipeline tok2vec, ner
Components tok2vec, ner
Vectors 0 keys, 0 unique vectors (0 dimensions)
Sources research grant applications
License n/a
Author Rahul Thorat

Label Scheme

View label scheme (18 labels for 1 components)
Component Labels
ner ACTIVITY, DISCIPLINE, EVENT, GPE, JOURNAL, KEYWORD, LICENSE, MEDIUM, METASTD, MONEY, ORG, PERSON, POSITION, PRODUCT, RECOGNITION, REF, REPOSITORY, WEBSITE

Accuracy

Type Score
ENTS_F 71.14
ENTS_P 76.91
ENTS_R 66.18
TOK2VEC_LOSS 1412244.09
NER_LOSS 1039417.96