metadata
tags:
- spacy
- token-classification
language:
- en
model-index:
- name: en_grantss
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.769098972
- name: NER Recall
type: recall
value: 0.6617812852
- name: NER F Score
type: f_score
value: 0.7114156528
Introduction
Three variants of the model is built with Spacy3 for grant applications. A simple named entity recognition custom model from scratch with annotation tool prodi.gy. Github info: https://github.com/RaThorat/ner_model_prodigy The most general model is 'en_grantss'. The model en_ncv is more suitable to extract entities from narrative CV's. The model en_grant is the first model in the series.
Feature | Description |
---|---|
Name | en_grantss |
Version | 0.0.0 |
spaCy | >=3.4.3,<3.5.0 |
Default Pipeline | tok2vec , ner |
Components | tok2vec , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | research grant applications |
License | n/a |
Author | Rahul Thorat |
Label Scheme
View label scheme (18 labels for 1 components)
Component | Labels |
---|---|
ner |
ACTIVITY , DISCIPLINE , EVENT , GPE , JOURNAL , KEYWORD , LICENSE , MEDIUM , METASTD , MONEY , ORG , PERSON , POSITION , PRODUCT , RECOGNITION , REF , REPOSITORY , WEBSITE |
Accuracy
Type | Score |
---|---|
ENTS_F |
71.14 |
ENTS_P |
76.91 |
ENTS_R |
66.18 |
TOK2VEC_LOSS |
1412244.09 |
NER_LOSS |
1039417.96 |