|
--- |
|
tags: |
|
- spacy |
|
- token-classification |
|
language: |
|
- en |
|
model-index: |
|
- name: en_grantss |
|
results: |
|
- task: |
|
name: NER |
|
type: token-classification |
|
metrics: |
|
- name: NER Precision |
|
type: precision |
|
value: 0.769098972 |
|
- name: NER Recall |
|
type: recall |
|
value: 0.6617812852 |
|
- name: NER F Score |
|
type: f_score |
|
value: 0.7114156528 |
|
--- |
|
## Introduction |
|
|
|
Three variants of the model is built with Spacy3 for grant applications. |
|
A simple named entity recognition custom model from scratch with annotation tool prodi.gy. |
|
Github info: https://github.com/RaThorat/ner_model_prodigy |
|
The most general model is 'en_grantss'. The model en_ncv is more suitable to extract entities from narrative CV's. |
|
The model en_grant is the first model in the series. |
|
|
|
| Feature | Description | |
|
| --- | --- | |
|
| **Name** | `en_grantss` | |
|
| **Version** | `0.0.0` | |
|
| **spaCy** | `>=3.4.3,<3.5.0` | |
|
| **Default Pipeline** | `tok2vec`, `ner` | |
|
| **Components** | `tok2vec`, `ner` | |
|
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | |
|
| **Sources** | research grant applications | |
|
| **License** | n/a | |
|
| **Author** | [Rahul Thorat]() | |
|
|
|
### Label Scheme |
|
|
|
<details> |
|
|
|
<summary>View label scheme (18 labels for 1 components)</summary> |
|
|
|
| Component | Labels | |
|
| --- | --- | |
|
| **`ner`** | `ACTIVITY`, `DISCIPLINE`, `EVENT`, `GPE`, `JOURNAL`, `KEYWORD`, `LICENSE`, `MEDIUM`, `METASTD`, `MONEY`, `ORG`, `PERSON`, `POSITION`, `PRODUCT`, `RECOGNITION`, `REF`, `REPOSITORY`, `WEBSITE` | |
|
|
|
</details> |
|
|
|
### Accuracy |
|
|
|
| Type | Score | |
|
| --- | --- | |
|
| `ENTS_F` | 71.14 | |
|
| `ENTS_P` | 76.91 | |
|
| `ENTS_R` | 66.18 | |
|
| `TOK2VEC_LOSS` | 1412244.09 | |
|
| `NER_LOSS` | 1039417.96 | |