|
--- |
|
license: other |
|
license_name: sla0044 |
|
license_link: >- |
|
https://github.com/STMicroelectronics/stm32aimodelzoo/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/LICENSE.md |
|
pipeline_tag: object-detection |
|
--- |
|
# ST Yolo X quantized |
|
|
|
## **Use case** : `Object detection` |
|
|
|
# Model description |
|
|
|
|
|
ST Yolo X is a real-time object detection model targeted for real-time processing implemented in Tensorflow. |
|
This is an optimized ST version of the well known yolo x, quantized in int8 format using tensorflow lite converter. |
|
|
|
## Network information |
|
|
|
| Network information | Value | |
|
|-------------------------|-----------------| |
|
| Framework | TensorFlow Lite | |
|
| Quantization | int8 | |
|
| Provenance | TO DO | |
|
| Paper | TO DO | |
|
|
|
|
|
|
|
## Network inputs / outputs |
|
|
|
For an image resolution of NxM and NC classes |
|
|
|
| Input Shape | Description | |
|
| ----- | ----------- | |
|
| (1, W, H, 3) | Single NxM RGB image with UINT8 values between 0 and 255 | |
|
|
|
| Output Shape | Description | |
|
| ----- | ----------- | |
|
| TO DO | |
|
|
|
|
|
## Recommended Platforms |
|
|
|
| Platform | Supported | Recommended | |
|
|----------|-----------|-------------| |
|
| STM32L0 | [] | [] | |
|
| STM32L4 | [] | [] | |
|
| STM32U5 | [] | [] | |
|
| STM32H7 | [x] | [] | |
|
| STM32MP1 | [x] | [] | |
|
| STM32MP2 | [x] | [x] | |
|
| STM32N6 | [x] | [x] | |
|
|
|
|
|
# Performances |
|
|
|
## Metrics |
|
|
|
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option. |
|
|
|
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset) |
|
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB)| Weights Flash (KiB)| STM32Cube.AI version | STEdgeAI Core version | |
|
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------| |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6 | 324 | 0.0 | 1028.08 | 10.0.0 | 2.0.0 | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 624 | 0.0 | 1028.08 | 10.0.0 | 2.0.0 | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 971.62 | 0.0 | 2547.17 | 10.0.0 | 2.0.0 | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6 | 968.5 | 0.0 | 1028.08 | 10.0.0 | 2.0.0 | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_416/st_yolo_x_nano_416_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 416x416x3 | STM32N6 | 2640.62 | 0.0 | 1027.89 | 10.0.0 | 2.0.0 | |
|
|
|
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset) |
|
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version | |
|
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------| |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 5.99 | 166.94 | 10.0.0 | 2.0.0 | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 8.5 | 117.65 | 10.0.0 | 2.0.0 | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 21.12 | 47.35 | 10.0.0 | 2.0.0 | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 11.59 | 86.29 | 10.0.0 | 2.0.0 | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_416/st_yolo_x_nano_416_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 416x416x3 | |
|
STM32N6570-DK | NPU/MCU | 17.99 | 55.59 | 10.0.0 | 2.0.0 | |
|
|
|
### Reference **MCU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset) |
|
|
|
| Model | Format | Resolution | Series | Activation RAM (KiB) | Runtime RAM (KiB)| Weights Flash (KiB)| Code Flash (KiB)| Total RAM | Total Flash | STM32Cube.AI version | |
|
|-------------------|--------|--------------|---------|----------------|-------------|---------------|------------|-------------|--------------|-----------------------| |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | Int8 | 192x192x3 | STM32H7 | 162.42 | 64.05 | 891.18 | 166.19 | 226.47 | 1057.37 | 10.0.0 | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | Int8 | 256x256x3 | STM32H7 | 284.92 | 64.05 | 891.18 | 166.21 | 348.97 | 1057.39 | 10.0.0 | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | Int8 | 256x256x3 | STM32H7 | 463.9 | 83.8 | 2435.76 | 228.22| 547.7 |2663.98 | 10.0.0 | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | Int8 | 320x320x3 | STM32H7 | 442.42 | 64.05 | 891.18 | 166.25 | 506.47 | 1057.43 | 10.0.0 | |
|
|
|
|
|
### Reference **MCU** inference time based on COCO Person dataset (see Accuracy for details on dataset) |
|
|
|
|
|
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version | |
|
|------------------|--------|------------|------------------|------------------|-------------|---------------------|-----------------------| |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | Int8 | 192x192x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 352.4 | 10.0.0 | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | Int8 | 256x256x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 619.92 | 10.0.0 | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | Int8 | 256x256x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 1696.59 | 10.0.0 | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | Int8 | 320x320x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 988.86 | 10.0.0 | |
|
|
|
|
|
|
|
### AP on COCO Person dataset |
|
|
|
|
|
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287 |
|
|
|
| Model | Format | Resolution | AP | |
|
|-------|--------|------------|----------------| |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | Int8 | 192x192x3 | 45.1 % | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25.h5) | Float | 192x192x3 | 45.2 % | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | Int8 | 256x256x3 | 53.6 % | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25.h5) | Float | 256x256x3 | 53.3 % | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | Int8 | 256x256x3 | 58.6 % | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4.h5) | Float | 256x256x3 | 58.7 % | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | Int8 | 320x320x3 | 57.1 % | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25.h5) | Float | 320x320x3 | 57.1 % | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_416/st_yolo_x_nano_416_0.33_0.25_int8.tflite) | Int8 | 416x416x3 | 62.2 % | |
|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_416/st_yolo_x_nano_416_0.33_0.25.h5) | Float | 416x416x3 | 62.5 % | |
|
|
|
\* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001 |
|
|
|
## Retraining and Integration in a simple example: |
|
|
|
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services) |
|
|
|
|
|
# References |
|
|
|
|
|
<a id="1">[1]</a> |
|
“Microsoft COCO: Common Objects in Context”. [Online]. Available: https://cocodataset.org/#download. |
|
@article{DBLP:journals/corr/LinMBHPRDZ14, |
|
author = {Tsung{-}Yi Lin and |
|
Michael Maire and |
|
Serge J. Belongie and |
|
Lubomir D. Bourdev and |
|
Ross B. Girshick and |
|
James Hays and |
|
Pietro Perona and |
|
Deva Ramanan and |
|
Piotr Doll{'{a} }r and |
|
C. Lawrence Zitnick}, |
|
title = {Microsoft {COCO:} Common Objects in Context}, |
|
journal = {CoRR}, |
|
volume = {abs/1405.0312}, |
|
year = {2014}, |
|
url = {http://arxiv.org/abs/1405.0312}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1405.0312}, |
|
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200}, |
|
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
|
|
|