Object Detection
st_yolo_x / README.md
FBAGSTM's picture
Update README.md
f04a422 verified
---
license: other
license_name: sla0044
license_link: >-
https://github.com/STMicroelectronics/stm32aimodelzoo/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/LICENSE.md
pipeline_tag: object-detection
---
# ST Yolo X quantized
## **Use case** : `Object detection`
# Model description
ST Yolo X is a real-time object detection model targeted for real-time processing implemented in Tensorflow.
This is an optimized ST version of the well known yolo x, quantized in int8 format using tensorflow lite converter.
## Network information
| Network information | Value |
|-------------------------|-----------------|
| Framework | TensorFlow Lite |
| Quantization | int8 |
| Provenance | TO DO |
| Paper | TO DO |
## Network inputs / outputs
For an image resolution of NxM and NC classes
| Input Shape | Description |
| ----- | ----------- |
| (1, W, H, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
| Output Shape | Description |
| ----- | ----------- |
| TO DO |
## Recommended Platforms
| Platform | Supported | Recommended |
|----------|-----------|-------------|
| STM32L0 | [] | [] |
| STM32L4 | [] | [] |
| STM32U5 | [] | [] |
| STM32H7 | [x] | [] |
| STM32MP1 | [x] | [] |
| STM32MP2 | [x] | [x] |
| STM32N6 | [x] | [x] |
# Performances
## Metrics
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB)| Weights Flash (KiB)| STM32Cube.AI version | STEdgeAI Core version |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6 | 324 | 0.0 | 1028.08 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 624 | 0.0 | 1028.08 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 971.62 | 0.0 | 2547.17 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6 | 968.5 | 0.0 | 1028.08 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_416/st_yolo_x_nano_416_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 416x416x3 | STM32N6 | 2640.62 | 0.0 | 1027.89 | 10.0.0 | 2.0.0 |
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 5.99 | 166.94 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 8.5 | 117.65 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 21.12 | 47.35 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 11.59 | 86.29 | 10.0.0 | 2.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_416/st_yolo_x_nano_416_0.33_0.25_int8.tflite) | COCO-Person | Int8 | 416x416x3 |
STM32N6570-DK | NPU/MCU | 17.99 | 55.59 | 10.0.0 | 2.0.0 |
### Reference **MCU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Series | Activation RAM (KiB) | Runtime RAM (KiB)| Weights Flash (KiB)| Code Flash (KiB)| Total RAM | Total Flash | STM32Cube.AI version |
|-------------------|--------|--------------|---------|----------------|-------------|---------------|------------|-------------|--------------|-----------------------|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | Int8 | 192x192x3 | STM32H7 | 162.42 | 64.05 | 891.18 | 166.19 | 226.47 | 1057.37 | 10.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | Int8 | 256x256x3 | STM32H7 | 284.92 | 64.05 | 891.18 | 166.21 | 348.97 | 1057.39 | 10.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | Int8 | 256x256x3 | STM32H7 | 463.9 | 83.8 | 2435.76 | 228.22| 547.7 |2663.98 | 10.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | Int8 | 320x320x3 | STM32H7 | 442.42 | 64.05 | 891.18 | 166.25 | 506.47 | 1057.43 | 10.0.0 |
### Reference **MCU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|------------------|--------|------------|------------------|------------------|-------------|---------------------|-----------------------|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | Int8 | 192x192x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 352.4 | 10.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | Int8 | 256x256x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 619.92 | 10.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | Int8 | 256x256x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 1696.59 | 10.0.0 |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | Int8 | 320x320x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 988.86 | 10.0.0 |
### AP on COCO Person dataset
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
| Model | Format | Resolution | AP |
|-------|--------|------------|----------------|
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite) | Int8 | 192x192x3 | 45.1 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25.h5) | Float | 192x192x3 | 45.2 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite) | Int8 | 256x256x3 | 53.6 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25.h5) | Float | 256x256x3 | 53.3 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4_int8.tflite) | Int8 | 256x256x3 | 58.6 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.5_0.4.h5) | Float | 256x256x3 | 58.7 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite) | Int8 | 320x320x3 | 57.1 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25.h5) | Float | 320x320x3 | 57.1 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_416/st_yolo_x_nano_416_0.33_0.25_int8.tflite) | Int8 | 416x416x3 | 62.2 % |
| [st_yolo_x_nano](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_416/st_yolo_x_nano_416_0.33_0.25.h5) | Float | 416x416x3 | 62.5 % |
\* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001
## Retraining and Integration in a simple example:
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
# References
<a id="1">[1]</a>
“Microsoft COCO: Common Objects in Context”. [Online]. Available: https://cocodataset.org/#download.
@article{DBLP:journals/corr/LinMBHPRDZ14,
author = {Tsung{-}Yi Lin and
Michael Maire and
Serge J. Belongie and
Lubomir D. Bourdev and
Ross B. Girshick and
James Hays and
Pietro Perona and
Deva Ramanan and
Piotr Doll{'{a} }r and
C. Lawrence Zitnick},
title = {Microsoft {COCO:} Common Objects in Context},
journal = {CoRR},
volume = {abs/1405.0312},
year = {2014},
url = {http://arxiv.org/abs/1405.0312},
archivePrefix = {arXiv},
eprint = {1405.0312},
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}