File size: 2,996 Bytes
89a586f 1876dd8 89a586f b2312cb 88a6d39 3fca97c 89a586f 97fb390 89a586f 3fca97c 64dc2ec 89a586f 97fb390 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f e2227ff 89a586f 7e63456 89a586f e2227ff 97fb390 7e63456 97fb390 e2227ff 89a586f 97fb390 89a586f 97fb390 89a586f 702f867 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
license: apache-2.0
pipeline_tag: text-generation
---
# π₯· Safurai-Csharp-34B
π [Article](https://www.safurai.com/blog/introducing-safurai-csharp)
π [Paper](https://www.safurai.com/)
<center><img src="https://i.imgur.com/REPqbYM.png" width="300"></center>
This is a [`codellama/CodeLlama-34b-hf`](https://huggingface.co/codellama/CodeLlama-34b-hf) model fine-tuned using QLoRA (4-bit precision) on 13B tokens of csharp evolved Q&A
We obtained <b>state-of-the-art performance</b> on the MultiPL-E code LLM benchmark for csharp, reaching 56% at pass@1 with n=5.
## π§ Training
It was trained on 2 x NVIDIA A100 PCIe 80GB in 7h 40m with the following configuration file:
```yaml
base_model: codellama/CodeLlama-34b-hf
base_model_config: codellama/CodeLlama-34b-hf
model_type: LlamaForCausalLM
tokenizer_type: CodeLlamaTokenizer
is_llama_derived_model: true
hub_model_id: "Safurai/Evol-csharp-v1"
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: Safurai/EvolInstruct-csharp-16k-13B-Alpaca
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./qlora-out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: codellama-csharp
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0003
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 40
eval_steps: 40
save_steps:
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
## π Training loss curve:
<img src="https://i.imgur.com/rp1htuf.png" width="500">
## π Dataset composition:
<img src="https://i.imgur.com/kTNXgGX.png" width="500">
## π» Usage
``` python
# pip install transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Safurai/Evol-csharp-full"
prompt = "User: \n {your question} \n Assistant: "
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
sequences = pipeline(
f'{prompt}',
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=1024,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |