File size: 3,096 Bytes
89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f b2312cb 89a586f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
---
license: apache-2.0
pipeline_tag: text-generation
---
# π¦π» Safurai-Csharp-34B
π [Article](https://www.safurai.com/blog/introducing-safurai-csharp)
<center><img src="https://media.discordapp.net/attachments/1071900237414801528/1165927645469478942/mrciffa_A_cartoon_samurai_wearing_a_black_jacket_as_a_chemistry_d4c17e16-567a-41da-9e0e-2902e93def2c.png?ex=6548a1bc&is=65362cbc&hm=5721b5c15d8f97374212970a7d01f17923ef5015d385230b8ae5542fd2d0df21&=&width=1224&height=1224" width="300"></center>
This is a [`codellama/CodeLlama-7b-hf`](https://huggingface.co/codellama/CodeLlama-7b-hf) model fine-tuned using QLoRA (4-bit precision) on the [`mlabonne/Evol-Instruct-Python-1k`](https://huggingface.co/datasets/mlabonne/Evol-Instruct-Python-1k).
## π§ Training
It was trained on an in 1h 11m 44s with the following configuration file:
```yaml
base_model: codellama/CodeLlama-34b-hf
base_model_config: codellama/CodeLlama-34b-hf
model_type: LlamaForCausalLM
tokenizer_type: CodeLlamaTokenizer
is_llama_derived_model: true
hub_model_id: "Safurai/Evol-csharp-v1"
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: Safurai/EvolInstruct-csharp-16k-13B-Alpaca
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./qlora-out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: codellama-csharp
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0003
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 40
eval_steps: 40
save_steps:
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
Here are the loss curves:
![](https://i.imgur.com/zrBq01N.png)
It is mainly designed for experimental purposes, not for inference.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
## π» Usage
``` python
# pip install transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/EvolCodeLlama-7b"
prompt = "Your csharp request"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
sequences = pipeline(
f'{prompt}',
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=1000,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
``` |