|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: Sakonii/nepalitext-language-model-dataset |
|
mask_token: <mask> |
|
widget: |
|
- text: मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। |
|
परिवर्तनशिल जलवायुले खाध, सुरक्षा, <mask>, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित |
|
छ। |
|
example_title: Example 1 |
|
- text: अचेल विद्यालय र कलेजहरूले स्मारिका कत्तिको प्रकाशन गर्छन्, यकिन छैन । केही |
|
वर्षपहिलेसम्म गाउँसहरका सानाठूला <mask> संस्थाहरूमा पुग्दा शिक्षक वा कर्मचारीले |
|
संस्थाबाट प्रकाशित पत्रिका, स्मारिका र पुस्तक कोसेलीका रूपमा थमाउँथे । |
|
example_title: Example 2 |
|
- text: जलविद्युत् विकासको ११० वर्षको इतिहास बनाएको नेपालमा हाल सरकारी र निजी क्षेत्रबाट |
|
गरी करिब २ हजार मेगावाट <mask> उत्पादन भइरहेको छ । |
|
example_title: Example 3 |
|
model-index: |
|
- name: de-berta-base-base-nepali |
|
results: [] |
|
--- |
|
|
|
# deberta-base-nepali |
|
|
|
This model is pre-trained on [nepalitext](https://huggingface.co/datasets/Sakonii/nepalitext-language-model-dataset) dataset consisting of over 13 million Nepali text sequences using a masked language modeling (MLM) objective. Our approach trains a Sentence Piece Model (SPM) for text tokenization similar to [XLM-ROBERTa](https://arxiv.org/abs/1911.02116) and trains [DeBERTa](https://arxiv.org/abs/2006.03654) for language modeling. |
|
|
|
It achieves the following results on the evaluation set: |
|
|
|
mlm probability|evaluation loss|evaluation perplexity |
|
--:|----:|-----:| |
|
20%|1.860|6.424| |
|
|
|
## Model description |
|
|
|
Refer to original [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) |
|
|
|
## Intended uses & limitations |
|
|
|
This backbone model intends to be fine-tuned on Nepali language focused downstream task such as sequence classification, token classification or question answering. |
|
The language model being trained on a data with texts grouped to a block size of 512, it handles text sequence up to 512 tokens and may not perform satisfactorily on shorter sequences. |
|
|
|
## Usage |
|
|
|
This model can be used directly with a pipeline for masked language modeling: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
>>> unmasker = pipeline('fill-mask', model='Sakonii/deberta-base-nepali') |
|
>>> unmasker("मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, <mask>, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।") |
|
|
|
[{'score': 0.10054448992013931, |
|
'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, वातावरण, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।', |
|
'token': 790, |
|
'token_str': 'वातावरण'}, |
|
{'score': 0.05399947986006737, |
|
'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, स्वास्थ्य, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।', |
|
'token': 231, |
|
'token_str': 'स्वास्थ्य'}, |
|
{'score': 0.045006219297647476, |
|
'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, जल, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।', |
|
'token': 1313, |
|
'token_str': 'जल'}, |
|
{'score': 0.04032573476433754, |
|
'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, पर्यावरण, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।', |
|
'token': 13156, |
|
'token_str': 'पर्यावरण'}, |
|
{'score': 0.026729246601462364, |
|
'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, संचार, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।', |
|
'token': 3996, |
|
'token_str': 'संचार'}] |
|
``` |
|
|
|
Here is how we can use the model to get the features of a given text in PyTorch: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForMaskedLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('Sakonii/deberta-base-nepali') |
|
model = AutoModelForMaskedLM.from_pretrained('Sakonii/deberta-base-nepali') |
|
|
|
# prepare input |
|
text = "चाहिएको text यता राख्नु होला।" |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
|
|
# forward pass |
|
output = model(**encoded_input) |
|
``` |
|
|
|
## Training data |
|
|
|
This model is trained on [nepalitext](https://huggingface.co/datasets/Sakonii/nepalitext-language-model-dataset) language modeling dataset which combines the datasets: [OSCAR](https://huggingface.co/datasets/oscar) , [cc100](https://huggingface.co/datasets/cc100) and a set of scraped Nepali articles on Wikipedia. |
|
As for training the language model, the texts in the training set are grouped to a block of 512 tokens. |
|
|
|
## Tokenization |
|
|
|
A Sentence Piece Model (SPM) is trained on a subset of [nepalitext](https://huggingface.co/datasets/Sakonii/nepalitext-language-model-dataset) dataset for text tokenization. The tokenizer trained with vocab-size=24576, min-frequency=4, limit-alphabet=1000 and model-max-length=512. |
|
|
|
## Training procedure |
|
The model is trained with the same configuration as the original [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base); 512 tokens per instance, 6 instances per batch, and around 188.8K training steps (per epoch). |
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 6 |
|
- eval_batch_size: 6 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Perplexity | |
|
|:-------------:|:-----:|:------:|:---------------:|:----------:| |
|
| 2.5454 | 1.0 | 188789 | 2.4273 | 11.3283 | |
|
| 2.2592 | 2.0 | 377578 | 2.1448 | 8.5403 | |
|
| 2.1171 | 3.0 | 566367 | 2.0030 | 7.4113 | |
|
| 2.0227 | 4.0 | 755156 | 1.9133 | 6.7754 | |
|
| 1.9375 | 5.0 | 943945 | 1.8600 | 6.4237 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0 |
|
- Pytorch 1.9.1 |
|
- Datasets 2.0.0 |
|
- Tokenizers 0.11.6 |
|
|