File size: 12,141 Bytes
9fe73d3
 
 
 
 
 
 
 
 
 
 
eb3d321
 
 
 
 
 
 
 
 
9fe73d3
 
 
 
 
 
 
 
 
 
 
 
 
 
eb3d321
9fe73d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb3d321
9fe73d3
 
 
 
 
 
 
 
 
 
 
eb3d321
 
 
 
 
 
 
 
9fe73d3
 
 
 
 
 
eb3d321
9fe73d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb3d321
9fe73d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb3d321
 
 
9fe73d3
 
 
eb3d321
 
 
 
9fe73d3
eb3d321
9fe73d3
 
 
4b10c16
9fe73d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb3d321
 
 
4b10c16
 
 
 
 
 
 
 
 
 
 
 
eb3d321
 
4b10c16
 
 
eb3d321
4b10c16
eb3d321
 
 
4b10c16
eb3d321
 
4b10c16
eb3d321
 
 
 
9fe73d3
 
 
 
 
d89c51b
9fe73d3
d89c51b
9fe73d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: sentence-transformers/paraphrase-mpnet-base-v2
metrics:
- accuracy
widget:
- text: I recently ordered the Bella Silver Pendant, but I haven't received any update
    about the shipment. Can you provide me with the current status of my order?
- text: What is the metal purity of the Eternal Swirl Rose Gold Hoop Earring, and
    does it come with a certificate of authenticity?
- text: Can you suggest some minimalist necklaces from your 'Best Sellers - Minimalist'
    range?
- text: I recently ordered the Pearly Round Earring but haven't received any shipping
    updates. Can you please provide me with the tracking information?
- text: what are the colors available in air jordan 4
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.8762886597938144
      name: Accuracy
---

# SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label                   | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|:------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| product policy          | <ul><li>'Are there any exceptions to the return policy for items that were purchased with a special offer promotion?'</li><li>'What is your policy on returning sneakers with added paint or dye?'</li><li>'Do you offer exchanges for items that were purchased with a special event celebration?'</li></ul>                                                                                                                                                                                                                |
| order tracking          | <ul><li>"I recently placed an order for the Regalia Gold Ring but I haven't received any confirmation or tracking details. Could you please update me on the status of my order?"</li><li>'What is the process for rerouting a shipment to a different address?'</li><li>"I recently ordered a Three Crystal Proposal Ring but haven't received any shipping updates yet. Could you please provide me with the current status of my order?"</li></ul>                                                                        |
| complaints              | <ul><li>"I recently bought the Golden Love Affair Pendant, but it seems to have tarnished very quickly. I'm not satisfied with the quality. What can you do about this?"</li><li>"I recently purchased the Three Crystal Proposal Ring, but I'm disappointed to find that one of the crystals is loose. Can you assist me with this issue?"</li><li>'I received my Kali- Handcrafted Earring today, but I found that one earring is slightly different from the other in design. Can you help me with this issue?'</li></ul> |
| product faq             | <ul><li>'What is the material used for making the All the Stars Pendant Set, and does it come with matching earrings?'</li><li>'What is the Bold and Beautiful Link Ring made of, and could you provide information on sizing and care instructions?'</li><li>'What is the material used for making the Sheer Heart Ring, and is it available in different sizes?'</li></ul>                                                                                                                                                 |
| product discoveribility | <ul><li>"I'm interested in necklaces that have an adjustable length. What options do you have?"</li><li>'Do you have any charm bracelets available at your store?'</li><li>'Could you suggest some pendants that would go well with traditional attire?'</li></ul>                                                                                                                                                                                                                                                           |
| product discoverability | <ul><li>'Types of bakery boxes available'</li><li>'adidas sneakers under 25k'</li><li>'show me 100 cookie boxes under $50'</li></ul>                                                                                                                                                                                                                                                                                                                                                                                         |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.8763   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("what are the colors available in air jordan 4")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 4   | 16.2235 | 36  |

| Label                   | Training Sample Count |
|:------------------------|:----------------------|
| complaints              | 30                    |
| order tracking          | 30                    |
| product discoverability | 30                    |
| product discoveribility | 30                    |
| product faq             | 20                    |
| product policy          | 30                    |

### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0007 | 1    | 0.1501        | -               |
| 0.0333 | 50   | 0.1076        | -               |
| 0.0667 | 100  | 0.01          | -               |
| 0.1    | 150  | 0.0023        | -               |
| 0.1333 | 200  | 0.0008        | -               |
| 0.1667 | 250  | 0.0007        | -               |
| 0.2    | 300  | 0.0005        | -               |
| 0.2333 | 350  | 0.0005        | -               |
| 0.2667 | 400  | 0.0003        | -               |
| 0.3    | 450  | 0.0005        | -               |
| 0.3333 | 500  | 0.0003        | -               |
| 0.3667 | 550  | 0.0003        | -               |
| 0.4    | 600  | 0.0002        | -               |
| 0.4333 | 650  | 0.0002        | -               |
| 0.4667 | 700  | 0.0003        | -               |
| 0.5    | 750  | 0.0002        | -               |
| 0.5333 | 800  | 0.0002        | -               |
| 0.5667 | 850  | 0.0002        | -               |
| 0.6    | 900  | 0.0002        | -               |
| 0.6333 | 950  | 0.0002        | -               |
| 0.6667 | 1000 | 0.0001        | -               |
| 0.7    | 1050 | 0.0001        | -               |
| 0.7333 | 1100 | 0.0002        | -               |
| 0.7667 | 1150 | 0.0001        | -               |
| 0.8    | 1200 | 0.0001        | -               |
| 0.8333 | 1250 | 0.0001        | -               |
| 0.8667 | 1300 | 0.0002        | -               |
| 0.9    | 1350 | 0.0001        | -               |
| 0.9333 | 1400 | 0.0002        | -               |
| 0.9667 | 1450 | 0.0001        | -               |
| 1.0    | 1500 | 0.0002        | -               |

### Framework Versions
- Python: 3.9.16
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.2
- PyTorch: 2.3.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->