File size: 60,994 Bytes
294a87a ebb8a2a 51d0009 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a 1e6e4a2 294a87a ebb8a2a 294a87a ebb8a2a 294a87a 1e6e4a2 294a87a 1e6e4a2 294a87a 1e6e4a2 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 51d0009 294a87a 51d0009 294a87a 51d0009 294a87a 51d0009 294a87a 51d0009 294a87a 51d0009 294a87a 51d0009 294a87a 51d0009 294a87a 078fc2d 294a87a 078fc2d 294a87a 078fc2d ebb8a2a 078fc2d 294a87a 078fc2d 294a87a 078fc2d 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a 51d0009 294a87a 51d0009 294a87a 51d0009 294a87a 51d0009 294a87a 51d0009 294a87a 51d0009 294a87a 51d0009 294a87a 51d0009 ebb8a2a 294a87a 51d0009 ebb8a2a 51d0009 294a87a ebb8a2a 294a87a 51d0009 294a87a 51d0009 294a87a ebb8a2a 294a87a 023253e 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a 51d0009 294a87a 51d0009 294a87a ebb8a2a 294a87a ebb8a2a 294a87a 51d0009 ebb8a2a 51d0009 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a 294a87a ebb8a2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 |
import os
import pyworld as pw
import math
import warnings
import logging
import torch
import torchaudio
import torch.nn.functional as F
import torch.nn.init as init
from torch import nn, Tensor
import numpy as np
import matplotlib.pyplot as plt
from typing import Optional, Dict, Union, List, Tuple, Any
from functools import partial
from datetime import datetime
from datasets import load_dataset, Audio
from transformers.trainer_seq2seq import Seq2SeqTrainer
from transformers.training_args_seq2seq import Seq2SeqTrainingArguments
import transformers
import evaluate
from dataclasses import dataclass
from opimizer import MaxFactor
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.set_float32_matmul_precision('high')
transformers.utils.logging.set_verbosity_error()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dtype = torch.float32
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.ERROR)
@dataclass
class Dimensions:
vocab: int
text_ctx: int
text_dims: int
text_head: int
text_idx: int
mels: int
aud_ctx: int
aud_dims: int
aud_head: int
aud_idx: int
act: str
debug: List[str]
cross_attn: bool
features: List[str]
def plot_waveform(x=None, w=None, p=None, per=None, sample_idx=0, sr=16000, hop_length=160,
title="", markers=None, marker_labels=None,
show_voiced_regions=True, show_energy=False):
num_plots = sum([x is not None, w is not None, p is not None, per is not None])
if num_plots == 0:
raise ValueError("No data to plot. Please provide at least one input tensor.")
t_spans = []
if w is not None:
w_np = w[sample_idx].detach().cpu().numpy()
if w_np.ndim > 1:
w_np = w_np.squeeze()
t_spans.append(len(w_np) / sr)
if x is not None:
x_np = x[sample_idx].detach().cpu().numpy()
if x_np.shape[0] < x_np.shape[1]:
x_np = x_np.T
t_spans.append(x_np.shape[0] * hop_length / sr)
if p is not None:
p_np = p[sample_idx].detach().cpu().numpy()
if p_np.ndim > 1:
p_np = p_np.squeeze()
t_spans.append(len(p_np) * hop_length / sr)
if per is not None:
per_np = per[sample_idx].detach().cpu().numpy()
if per_np.ndim > 1:
per_np = per_np.squeeze()
t_spans.append(len(per_np) * hop_length / sr)
max_t = max(t_spans) if t_spans else 0
fig, axs = plt.subplots(num_plots, 1, figsize=(14, 4*num_plots), sharex=True)
if num_plots == 1:
axs = [axs]
if show_voiced_regions and per is not None:
per_np = per[sample_idx].detach().cpu().numpy()
if per_np.ndim > 1:
per_np = per_np.squeeze()
t_per = np.arange(len(per_np)) * hop_length / sr
threshold = 0.5
for ax in axs:
for i in range(len(per_np)-1):
if per_np[i] > threshold:
ax.axvspan(t_per[i], t_per[i+1], color='lightblue', alpha=0.2, zorder=0)
cu_ax = 0
if w is not None:
w_np = w[sample_idx].detach().cpu().numpy()
if w_np.ndim > 1:
w_np = w_np.squeeze()
t = np.arange(len(w_np)) / sr
axs[cu_ax].plot(t, w_np, color="tab:blue")
if show_energy:
frame_length = hop_length
hop_length_energy = hop_length // 2
energy = []
for i in range(0, len(w_np)-frame_length, hop_length_energy):
frame = w_np[i:i+frame_length]
energy.append(np.sqrt(np.mean(frame**2)))
energy = np.array(energy)
energy = energy / np.max(energy) * 0.8 * max(abs(w_np.min()), abs(w_np.max()))
t_energy = np.arange(len(energy)) * hop_length_energy / sr
axs[cu_ax].plot(t_energy, energy, color="red", alpha=0.7, label="Energy")
axs[cu_ax].legend(loc='upper right')
axs[cu_ax].set_title("Waveform")
axs[cu_ax].set_ylabel("Amplitude")
axs[cu_ax].set_xlim([0, max_t])
axs[cu_ax].grid(True, axis='x', linestyle='--', alpha=0.3)
cu_ax += 1
if x is not None:
x_np = x[sample_idx].detach().cpu().numpy()
if x_np.shape[0] < x_np.shape[1]:
x_np = x_np.T
axs[cu_ax].imshow(x_np.T, aspect="auto", origin="lower", cmap="magma",
extent=[0, x_np.shape[0]*hop_length/sr, 0, x_np.shape[1]])
axs[cu_ax].set_title("Spectrogram")
axs[cu_ax].set_ylabel("Mel Bin")
axs[cu_ax].set_xlim([0, max_t])
axs[cu_ax].grid(True, axis='x', linestyle='--', alpha=0.3)
cu_ax += 1
if p is not None:
p_np = p[sample_idx].detach().cpu().numpy()
if p_np.ndim > 1:
p_np = p_np.squeeze()
t_p = np.arange(len(p_np)) * hop_length / sr
axs[cu_ax].plot(t_p, p_np, color="tab:green")
axs[cu_ax].set_title("Pitch")
axs[cu_ax].set_ylabel("Frequency (Hz)")
axs[cu_ax].set_xlim([0, max_t])
axs[cu_ax].grid(True, axis='both', linestyle='--', alpha=0.3)
axs[cu_ax].set_ylim([0, min(1000, p_np.max() * 1.2)])
cu_ax += 1
if per is not None:
per_np = per[sample_idx].detach().cpu().numpy()
if per_np.ndim > 1:
per_np = per_np.squeeze()
t_per = np.arange(len(per_np)) * hop_length / sr
axs[cu_ax].plot(t_per, per_np, color="tab:red")
axs[cu_ax].set_title("Period (Voice Activity)")
axs[cu_ax].set_ylabel("periodocity")
axs[cu_ax].set_xlim([0, max_t])
axs[cu_ax].grid(True, axis='both', linestyle='--', alpha=0.3)
axs[cu_ax].set_ylim([-0.05, 1.05])
axs[cu_ax].axhline(y=0.5, color='k', linestyle='--', alpha=0.3)
if markers is not None:
for i, t in enumerate(markers):
label = marker_labels[i] if marker_labels and i < len(marker_labels) else None
for ax in axs:
ax.axvline(x=t, color='k', linestyle='-', alpha=0.7, label=label if i == 0 else None)
if marker_labels:
axs[0].legend(loc='upper right', fontsize='small')
axs[-1].set_xlabel("t (s)")
fig.suptitle(title, fontsize=16)
plt.tight_layout(rect=[0, 0, 1, 0.97])
plt.show()
return fig
def dict_to(d, device, dtype=dtype):
"""Because PyTorch should have this built-in but doesn't"""
return {k: v.to(device, dtype) if isinstance(v, torch.Tensor) else v
for k, v in d.items()}
def exists(v):
return v is not None
def default(v, b):
return v if exists(v) else b
class Conv1d(nn.Conv1d):
def _conv_forward(
self, x: Tensor, weight: Tensor, bias) -> Tensor:
return super()._conv_forward(x, weight.to(x.device, x.dtype), None if bias is None else bias.to(x.device, x.dtype))
class Conv2d(nn.Conv2d):
def _conv_forward(
self, x: Tensor, weight: Tensor, bias) -> Tensor:
return super()._conv_forward(x, weight.to(x.device, x.dtype), None if bias is None else bias.to(x.device, x.dtype))
class Linear(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None:
super(Linear, self).__init__()
self.linear = nn.Linear(in_features, out_features, bias=bias)
init.xavier_uniform_(self.linear.weight)
if bias:
init.zeros_(self.linear.bias)
def forward(self, x: Tensor) -> Tensor:
return self.linear(x)
class RMSNorm(nn.Module):
def __init__(self, dims: Union[int, Tensor, List, Tuple],
eps = 1e-8, elementwise_affine = True):
super(RMSNorm, self).__init__()
if isinstance(dims, int):
self.normalized_shape = (dims,)
else:
self.normalized_shape = tuple(dims)
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = nn.Parameter(torch.empty(self.normalized_shape))
init.ones_(self.weight)
else:
self.register_parameter("weight", None)
def forward(self, x):
return F.rms_norm(x, self.normalized_shape, self.weight, self.eps)
def LayerNorm(x: Tensor, normalized_shape: Union[int, Tensor, List, Tuple],
weight: Optional[Tensor] = None, bias: Optional[Tensor] = None,
eps: float = 1e-5) -> Tensor:
return F.layer_norm(x, normalized_shape, weight, bias, eps)
def get_device():
return torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def get_dtype():
return torch.float32 if torch.cuda.is_available() else torch.float64
def tox():
return {"device": get_device(), "dtype": get_dtype()}
def sinusoids(length, channels, max_tscale=10000):
assert channels % 2 == 0
log_tscale_increment = np.log(max_tscale) / (channels // 2 - 1)
inv_tscales = torch.exp(-log_tscale_increment * torch.arange(channels // 2))
scaled_t = torch.arange(length)[:, np.newaxis] * inv_tscales[np.newaxis, :]
return torch.cat([torch.sin(scaled_t), torch.cos(scaled_t)], dim=1)
class rotary(nn.Module):
def __init__(self, dims, head, max_ctx=1500, theta=10000, radii=True, debug: List[str] = [], use_pbias=False):
super(rotary, self).__init__()
self.use_pbias = use_pbias
self.dims = dims
self.head = head
self.head_dim = dims // head
self.radii = radii
self.dim = self.head_dim
self.debug = debug
self.counter = 0
self.last_theta = None
self.bias = nn.Parameter(torch.zeros(max_ctx, dims // 2))
self.theta = nn.Parameter(torch.tensor(theta, device=device, dtype=dtype), requires_grad=True)
def theta_freqs(self, theta):
freq = (theta / 220.0) * 700 * (torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 8000/700)), self.dim // 2, device=device, dtype=dtype) / 2595) - 1) / 1000
freqs = nn.Parameter(torch.tensor(freq, device=device, dtype=dtype), requires_grad=True)
return freqs
def inverse_mel_scale_scalar(mel_freq: float) -> float:
return 700.0 * (math.exp(mel_freq / 1127.0) - 1.0)
def inverse_mel_scale(mel_freq: Tensor) -> Tensor:
return 700.0 * ((mel_freq / 1127.0).exp() - 1.0)
def mel_scale_scalar(freq: float) -> float:
return 1127.0 * math.log(1.0 + freq / 700.0)
def mel_scale(freq: Tensor) -> Tensor:
return 1127.0 * (1.0 + freq / 700.0).log()
def return_f0(self, f0=None):
if f0 is not None:
self.f0 = f0
self.update_base(f0)
return f0.squeeze(0).to(device, dtype)
elif hasattr(self, 'f0') and self.f0 is not None:
return self.f0.squeeze(0).to(device, dtype)
return None
def get_pitch_bias(self, f0):
if f0 is None:
return None
f0_flat = f0.squeeze().float()
f0_norm = (f0_flat - f0_flat.mean()) / (f0_flat.std() + 1e-8)
f0_sim = torch.exp(-torch.cdist(f0_norm.unsqueeze(1),
f0_norm.unsqueeze(1)))
return f0_sim.unsqueeze(0).unsqueeze(0)
def f0proj(self, f0):
if f0.ndim == 3:
f0 = f0.squeeze(0)
self.f0_proj = nn.Linear(1, self.head_dim // 2, device=device, dtype=dtype)
f0 = f0.to(device, dtype)
f0 = self.f0_proj(f0.unsqueeze(-1))
if f0.ndim == 3:
f0 = f0.squeeze(0)
return f0.to(device=device, dtype=dtype)
def align_f0(self, ctx, f0):
f0 = self.f0proj(f0)
if f0.dim() == 3:
batch, length, dims = f0.shape
if length == ctx:
return f0
frames = length / ctx
idx = torch.arange(ctx, device=f0.device)
idx = (idx * frames).long().clamp(0, length - 1)
return f0[:, idx, :]
if f0.dim() == 1:
length = f0.shape[0]
if length == ctx:
return f0
frames = length / ctx
idx = torch.arange(ctx, device=f0.device)
idx = (idx * frames).long().clamp(0, length - 1)
return f0[idx]
else:
length, dims = f0.shape
if length == ctx:
return f0
frames = length / ctx
idx = torch.arange(ctx, device=f0.device)
idx = (idx * frames).long().clamp(0, length - 1)
return f0[idx, :]
def forward(self, x=None, enc=None, layer=None, feature_type="audio") -> Tensor:
f0 = enc.get("f0") if enc is not None else None
if isinstance(x, int):
ctx = x
elif isinstance(x, torch.Tensor) and x.ndim == 2:
batch, ctx = x.shape
elif isinstance(x, torch.Tensor) and x.ndim == 3:
batch, ctx, dims = x.shape
else:
batch, head, ctx, head_dim = x.shape
t = torch.arange(ctx, device=device, dtype=dtype)
if f0 is not None and f0.dim() == 2:
if f0.shape[0] == 1:
f0 = f0.squeeze(0)
else:
f0 = f0.view(-1)
if f0 is not None:
f0_mean = f0.mean()
theta = f0_mean + self.theta
else:
theta = self.theta
freqs = self.theta_freqs(theta)
freqs = t[:, None] * freqs[None, :]
if self.radii and f0 is not None:
radius = f0.to(device, dtype)
L = radius.shape[0]
if L != ctx:
F = L / ctx
idx = torch.arange(ctx, device=f0.device)
idx = (idx * F).long().clamp(0, L - 1)
radius = radius[idx]
freqs = torch.polar(radius.unsqueeze(-1).expand_as(freqs), freqs)
else:
freqs = torch.polar(torch.ones_like(freqs), freqs)
if "radius" in self.debug and self.counter % 100 == 0:
theta_value = theta.item() if isinstance(theta, torch.Tensor) else theta
print(f" [{layer}] [Radius] {radius.shape} {radius.mean():.2f} [Theta] {theta_value:.2f} [f0] {f0.shape if f0 is not None else None} [Freqs] {freqs.shape} {freqs.mean():.2f} [ctx] {ctx}")
if "theta" in self.debug and self.counter % 100 == 0:
if self.last_theta is None or abs(self.last_theta - theta.item()) > 1.0:
self.last_theta = theta.item()
print(f"[Theta] {self.last_theta:.2f}")
self.counter += 1
return freqs.unsqueeze(0)
@staticmethod
def apply_rotary(x, freqs):
x1 = x[..., :freqs.shape[-1]*2]
x2 = x[..., freqs.shape[-1]*2:]
orig_shape = x1.shape
if x1.ndim == 2:
x1 = x1.unsqueeze(0)
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
x1 = torch.view_as_complex(x1) * freqs
x1 = torch.view_as_real(x1).flatten(-2)
x1 = x1.view(orig_shape)
return torch.cat([x1.type_as(x), x2], dim=-1)
class MultiheadA(nn.Module):
_seen = set()
rbf = False
def __init__(self, dims: int, head: int, rotary_emb: bool = True,
zero_val: float = 1e-4, minz: float = 1e-6, maxz: float = 1e-3, debug: List[str] = [], optim_attn=False):
super(MultiheadA, self).__init__()
self.dims = dims
self.head = head
self.head_dim = dims // head
self.debug = debug
self.counter = 0
self.q = nn.Linear(dims, dims).to(device, dtype)
self.k = nn.Linear(dims, dims, bias=False).to(device, dtype)
self.v = nn.Linear(dims, dims).to(device, dtype)
self.o = nn.Linear(dims, dims).to(device, dtype)
self.pad_token = 0
self.rotary_emb = rotary_emb
self.minz = minz
self.maxz = maxz
self.zero_val = zero_val
self.optim_attn = optim_attn
self.fzero = nn.Parameter(torch.tensor(zero_val, device=device, dtype=dtype), requires_grad=False)
if rotary_emb:
self.rope = rotary(
dims=dims,
head=head,
debug=debug,
radii=True,
)
else:
self.rope = None
def cos_sim(self, q: Tensor, k: Tensor, v: Tensor, mask) -> Tensor:
q_norm = torch.nn.functional.normalize(q, dim=-1, eps=1e-12)
k_norm = torch.nn.functional.normalize(k, dim=-1, eps=1e-12)
qk_cosine = torch.matmul(q_norm, k_norm.transpose(-1, -2))
qk_cosine = qk_cosine + mask
weights = F.softmax(qk_cosine, dim=-1)
out = torch.matmul(weights, v)
return out
def rbf_scores(self, q, k, rbf_sigma=1.0, rbf_ratio=0.0):
scale = (self.dims // self.head) ** -0.25
dot_scores = torch.matmul(q, k.transpose(-1, -2)) * scale
if rbf_ratio <= 0.0:
return dot_scores
q_norm = q.pow(2).sum(dim=-1, keepdim=True)
k_norm = k.pow(2).sum(dim=-1, keepdim=True)
qk = torch.matmul(q, k.transpose(-1, -2))
dist_sq = q_norm + k_norm.transpose(-1, -2) - 2 * qk
rbf_scores = torch.exp(-dist_sq / (2 * rbf_sigma**2))
return (1 - rbf_ratio) * dot_scores + rbf_ratio * rbf_scores
def forward(self, x: Tensor, xa: Tensor = None, mask: Tensor = None, enc = None, layer = None, feature_type="audio", need_weights=True) -> tuple:
x = x.to(device, dtype)
if xa is not None:
xa = xa.to(device, dtype)
scale = (self.dims // self.head) ** -0.25
z = default(xa, x).to(device, dtype)
q = self.q(x)
k = self.k(z)
v = self.v(z)
if self.rotary_emb:
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
q2 = q.shape[2]
k2 = k.shape[2]
q = self.rope.apply_rotary(q, (self.rope(q2, enc=enc, layer=layer)))
k = self.rope.apply_rotary(k, (self.rope(k2, enc=enc, layer=layer)))
else:
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
batch, head, ctx, head_dim = q.shape
if self.rbf:
qk = self.rbf_scores(q * scale, k * scale, rbf_sigma=1.0, rbf_ratio=0.3)
qk = (q * scale) @ (k * scale).transpose(-1, -2)
if self.rope.use_pbias:
f0 = enc.get("f0", None) if enc is not None else None
pbias = self.rope.use_pbias(f0)
if pbias is not None:
qk = qk + pbias[:,:,:q2,:q2]
token_ids = k[:, :, :, 0]
zscale = torch.ones_like(token_ids)
fzero = torch.clamp(F.softplus(self.fzero), self.minz, self.maxz)
zscale[token_ids.float() == self.pad_token] = fzero
if mask is not None:
mask = mask[:q2, :q2]
qk = qk + mask.unsqueeze(0).unsqueeze(0) * zscale.unsqueeze(-2).expand(qk.shape)
qk = qk * zscale.unsqueeze(-2)
w = F.softmax(qk, dim=-1).to(q.dtype)
wv = (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2)
if "multihead" in self.debug and self.counter % 100 == 0:
print(f"MHA: q={q.shape}, k={k.shape}, v={v.shape} - {qk.shape}, wv shape: {wv.shape}")
self.counter += 1
return self.o(wv), qk
class t_gate(nn.Module):
def __init__(self, dims, num_types=4):
super().__init__()
self.gate_projections = nn.ModuleList([
nn.Sequential(Linear(dims, 1), nn.Sigmoid())
for _ in range(num_types)])
self.type_classifier = nn.Sequential(
Linear(dims, num_types),
nn.Softmax(dim=-1))
def forward(self, x):
type_probs = self.type_classifier(x)
gates = torch.stack([gate(x) for gate in self.gate_projections], dim=-1)
comb_gate = torch.sum(gates * type_probs.unsqueeze(2), dim=-1)
return comb_gate
class m_gate(nn.Module):
def __init__(self, dims, mem_size=64):
super().__init__()
self.m_key = nn.Parameter(torch.randn(mem_size, dims))
self.m_val = nn.Parameter(torch.randn(mem_size, 1))
self.gate_proj = nn.Sequential(Linear(dims, dims//2), nn.SiLU(), Linear(dims//2, 1))
def forward(self, x):
d_gate = torch.sigmoid(self.gate_proj(x))
attention = torch.matmul(x, self.m_key.transpose(0, 1))
attention = F.softmax(attention / math.sqrt(x.shape[-1]), dim=-1)
m_gate = torch.matmul(attention, self.m_val)
m_gate = torch.sigmoid(m_gate)
return 0.5 * (d_gate + m_gate)
class c_gate(nn.Module):
def __init__(self, dims):
super().__init__()
self.s_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
self.w_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
self.p_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
self.e_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
self.ph_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
self.integ = Linear(dims*5, dims)
def forward(self, x, features):
s_feat = features.get("spectrogram", x)
w_feat = features.get("waveform", x)
p_feat = features.get("pitch", x)
e_feat = features.get("envelope", x)
ph_feat = features.get("phase", x)
s = self.s_gate(x) * s_feat
w = self.w_gate(x) * w_feat
p = self.p_gate(x) * p_feat
e = self.e_gate(x) * e_feat
ph = self.ph_gate(x) * ph_feat
comb = torch.cat([s, w, p, e, ph], dim=-1)
return self.integ(comb)
class Residual(nn.Module):
_seen = set()
def __init__(self, ctx, dims, head, act, cross_attn=True, debug: List[str] = [],
tgate=True, mgate=False, cgate=False, mem_size=512, features=None):
super().__init__()
self.dims = dims
self.head = head
self.ctx = ctx
self.head_dim = dims // head
self.cross_attn = cross_attn
self.features = features
self.debug = debug
self.counter = 0
self.dropout = 0.01
self.t_gate = tgate
self.m_gate = mgate
self.c_gate = cgate
self.do_blend = "no_blend" not in self.debug
self.blend = nn.Parameter(torch.tensor(0.5))
self.skip_gates = True if "skip_gates" in self.debug else False
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(),
"tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(),
"softplus": nn.Softplus(), "softshrink": nn.Softshrink(),
"leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
act_fn = act_map.get(act, nn.GELU())
self.attna = MultiheadA(dims, head, rotary_emb=True, debug=debug)
self.attnb = (MultiheadA(dims, head, rotary_emb=True, debug=debug) if cross_attn else None)
mlp = dims * 4
self.mlp = nn.Sequential(Linear(dims, mlp), act_fn, Linear(mlp, dims))
self.t_gate = t_gate(dims=dims, num_types=4) if t_gate else None
self.m_gate = m_gate(dims=dims, mem_size=mem_size) if m_gate else None
self.c_gate = c_gate(dims=dims) if cgate else None
self.lna = RMSNorm(dims)
self.lnb = RMSNorm(dims) if cross_attn else None
self.lnc = RMSNorm(dims)
if not any([t_gate, m_gate, c_gate]):
self.mlp_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
def forward(self, x, xa=None, mask=None, enc=None, layer=None, feature_type="audio") -> Tensor:
x = x + self.attna(self.lna(x), xa=None, mask=mask, enc=enc, layer=layer)[0]
xb = x
if self.attnb and xa is not None:
x = x + self.attnb(self.lnb(x), xa=xa, mask=None, enc=enc, layer=layer)[0]
if self.do_blend:
b = torch.sigmoid(self.blend)
x = b * xb + (1 - b) * x
if self.skip_gates:
x = x + self.mlp(self.lnc(x))
else:
normx = self.lnc(x)
mlp_out = self.mlp(normx)
if self.t_gate:
gate = self.t_gate(normx)
x = x + gate * mlp_out
elif self.m_gate:
gate = self.m_gate(normx)
x = x + gate * mlp_out
elif self.c_gate:
gate_output = self.c_gate(normx, self.features)
x = x + gate_output
else:
if hasattr(self, 'mlp_gate'):
mlp_gate = self.mlp_gate(normx)
x = x + mlp_gate * mlp_out
else:
x = x + mlp_out
if "residual" in self.debug and self.counter % 100 == 0:
print(f"Step {self.counter}: Residual block output shape: {x.shape}, xa shape: {xa.shape if xa is not None else None}")
if self.t_gate:
print(f"Step {self.counter}: Using t_gate: {self.t_gate}")
elif self.m_gate:
print(f"Step {self.counter}: Using m_gate: {self.m_gate}")
elif self.c_gate:
print(f"Step {self.counter}: Using c_gate: {self.c_gate}")
else:
print(f"Step {self.counter}: Using MLP gate: {self.mlp_gate if hasattr(self, 'mlp_gate') else None}")
self.counter += 1
return x
class FEncoder(nn.Module):
def __init__(self, input_dims, dims, head, layer, kernel_size, act, stride=1, use_rope=False, spec_shape=None):
super().__init__()
self.head = head
self.head_dim = dims // head
self.dropout = 0.01
self.use_rope = use_rope
self.dims = dims
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
act_fn = act_map.get(act, nn.GELU())
self.encoder = nn.Sequential(
Conv1d(input_dims, dims, kernel_size=kernel_size, stride=stride, padding=kernel_size//2), act_fn,
Conv1d(dims, dims, kernel_size=5, padding=2), act_fn,
Conv1d(dims, dims, kernel_size=3, padding=1, groups=dims), act_fn)
if use_rope:
if spec_shape is not None:
self.rope = rotary(
dims=self.head_dim,
use_2d_axial=True,
spec_shape=spec_shape, debug=[])
else:
self.rope = rotary(
dims=self.head_dim,
use_2d_axial=False, debug=[])
else:
self.rope = None
self.positional = lambda length: sinusoids(length, dims)
self.norm = RMSNorm(dims)
self._norm = RMSNorm(dims)
def apply_rope_to_features(self, x, layer=None, feature_type="audio"):
if feature_type in ["envelope", "phase"]:
feature_type = "spectrogram"
batch, ctx, dims = x.shape
x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
if feature_type == "spectrogram" and hasattr(self.rope, 'use_2d_axial') and self.rope.use_2d_axial:
rope_freqs = self.rope(ctx, layer=layer, input_type="spectrogram")
else:
rope_freqs = self.rope(ctx, layer=layer, input_type="audio")
x = self.rope.apply_rotary(x, rope_freqs)
x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)
return x
def forward(self, x, enc=None, layer=None, feature_type="audio"):
x = self.encoder(x).permute(0, 2, 1)
if self.use_rope:
x = self.apply_rope_to_features(x, layer=layer, feature_type=feature_type)
else:
x = x + self.positional(x.shape[1]).to(x.device, x.dtype)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = self._norm(x)
return x
class WEncoder(nn.Module):
def __init__(self, input_dims, dims, head, layer, kernel_size, act, use_rope=False):
super().__init__()
self.head = head
self.head_dim = dims // head
self.dropout = 0.01
self.use_rope = use_rope
self.dims = dims
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
act_fn = act_map.get(act, nn.GELU())
self.downsample = nn.Sequential(
Conv1d(input_dims, dims//8, kernel_size=15, stride=8, padding=7), act_fn,
Conv1d(dims//8, dims//4, kernel_size=7, stride=4, padding=3), act_fn,
Conv1d(dims//4, dims, kernel_size=9, stride=5, padding=4), act_fn)
self.encoder = nn.Sequential(
Conv1d(dims, dims, kernel_size=3, padding=1, groups=dims//8), act_fn,
Conv1d(dims, dims, kernel_size=1), act_fn)
if use_rope:
self.rope = rotary(
dims=self.head_dim,
use_2d_axial=False,
theta=50.0, debug=[])
else:
self.rope = None
self.positional = lambda length: sinusoids(length, dims)
self.norm = RMSNorm(dims)
def apply_rope_to_features(self, x, layer=None):
if not self.use_rope or self.rope is None:
return x
batch, ctx, dims = x.shape
x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
rope_freqs = self.rope(ctx, layer=layer, input_type="waveform")
x = self.rope.apply_rotary(x, rope_freqs)
x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)
return x
def forward(self, x, enc=None, layer=None, feature_type="waveform"):
x = self.downsample(x)
x = self.encoder(x)
x = x.permute(0, 2, 1)
if self.use_rope:
x = self.apply_rope_to_features(x, layer=layer)
else:
x = x + self.positional(x.shape[1]).to(x.device, x.dtype)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
return self.norm(x)
class PEncoder(nn.Module):
def __init__(self, input_dims, dims, head, layer, kernel_size, act, use_rope=False):
super().__init__()
self.head = head
self.head_dim = dims // head
self.dropout = 0.01
self.use_rope = use_rope
self.dims = dims
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
act_fn = act_map.get(act, nn.GELU())
self.encoder = nn.Sequential(
Conv1d(input_dims, dims//4, kernel_size=7, stride=8, padding=3), act_fn,
Conv1d(dims//4, dims//2, kernel_size=5, stride=4, padding=2), act_fn,
Conv1d(dims//2, dims, kernel_size=5, stride=5, padding=2), act_fn)
if use_rope:
self.rope = rotary(
dims=self.head_dim,
use_2d_axial=False,
theta=100.0, debug=[])
else:
self.rope = None
self.positional = lambda length: sinusoids(length, dims)
self.norm = RMSNorm(dims)
def apply_rope_to_features(self, x, layer=None):
if not self.use_rope or self.rope is None:
return x
batch, ctx, dims = x.shape
x = x.view(batch, ctx, self.head, self.head_dim).permute(0, 2, 1, 3)
rope_freqs = self.rope(ctx, layer=layer, input_type="pitch")
x = self.rope.apply_rotary(x, rope_freqs)
x = x.permute(0, 2, 1, 3).contiguous().view(batch, ctx, dims)
return x
def forward(self, x, enc=None, layer=None, feature_type="pitch"):
x = self.encoder(x).permute(0, 2, 1)
if self.use_rope:
x = self.apply_rope_to_features(x, layer=layer)
else:
x = x + self.positional(x.shape[1]).to(x.device, x.dtype)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = self.norm(x)
return x
class AudioEncoder(nn.Module):
_seen = set()
def __init__(self, mels: int, ctx: int, dims: int, head: int, layer: int, debug: List[str], features: List[str], act: str = "gelu"):
super(AudioEncoder, self).__init__()
self.dims = dims
self.head = head
self.ctx = ctx
self.head_dim = dims // head
self.debug = debug
self.counter = 0
self.features = features
self.dropout = 0.01
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(),"tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
act_fn = act_map.get(act, nn.GELU())
if features == ["spectrogram", "waveform", "pitch"]:
cgate=True
else:
cgate = False
self.blocks = nn.ModuleDict({
"spectrogram": nn.ModuleList(
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)]
if "spectrogram" in features else None),
"waveform": nn.ModuleList(
[WEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=11, act=act_fn)] +
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)]
if "waveform" in features else None),
"pitch": nn.ModuleList(
[FEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=9, act=act, stride=2)] +
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)]
if "pitch" in features else None),
"envelope": nn.ModuleList(
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)]
if "envelope" in features else None),
"phase": nn.ModuleList(
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)]
if "phase" in features else None),
})
def forward(self, enc, layer="encoder"):
enc = dict_to(enc, device, dtype)
out = {}
out.update(enc)
for f in self.features:
if f in enc and f in self.blocks:
x = enc[f]
for block in self.blocks[f]:
x = block(x, enc=enc, layer=layer)
out[f] = x
if self.counter < 1 and "encoder" in self.debug:
s = enc.get("spectrogram")
w = enc.get("waveform")
p = default(enc.get("pitch"), enc.get("f0"))
plot_waveform(x=s, w=w, p=p, hop_length=128)
shapes = {k: v.shape for k, v in enc.items()}
print(f"Step {self.counter}: mode: {list(enc.keys()) }: shapes: {shapes}")
self.counter += 1
return out
class TextDecoder(nn.Module):
def __init__(self, vocab: int, ctx: int, dims: int, head: int, layer: int, cross_attn: bool,
debug: List[str], features: List[str]):
super(TextDecoder, self).__init__()
self.ctx = ctx
self.dims = dims
self.head = head
self.head_dim = dims // head
self.debug = debug
self.counter = 0
self.dropout = 0.01
self.features = features
self.do_blend = "no_blend" not in self.debug
self.sequential = False
self.token = nn.Embedding(num_embeddings=vocab, embedding_dim=dims)
with torch.no_grad():
self.token.weight[0].zero_()
self.positional = nn.Parameter(data=torch.empty(ctx, dims), requires_grad=True)
self.block = nn.ModuleList([
Residual(ctx=ctx, dims=dims, head=head, act="gelu", cross_attn=cross_attn, debug=debug, features=features)
for _ in range(layer)])
self.blocks = nn.ModuleDict({
f: nn.ModuleList([Residual(ctx=ctx, dims=dims, head=head, act="gelu", cross_attn=cross_attn, debug=debug, features=features)
for _ in range(layer)]) for f in features})
self.blend = nn.ParameterDict({f: nn.Parameter(torch.tensor(0.5)) for f in features})
self.ln_dec = RMSNorm(dims)
mask = torch.tril(torch.ones(ctx, ctx), diagonal=0)
self.register_buffer("mask", mask, persistent=False)
def forward(self, x, enc, order=None, layer='decoder') -> Tensor:
if order is None:
order = self.features
mask = self.mask[:x.shape[1], :x.shape[1]]
x = self.token(x) + self.positional[:x.shape[1]]
x = F.dropout(x, p=self.dropout, training=self.training)
for block in self.block:
x = block(x, xa=None, mask=mask, enc=None, layer=layer)
for f in order:
if f in enc:
xa = enc[f]
for block in self.blocks[f]:
out = block(x=x, xa=xa, mask=None, enc=None, layer=layer)
if self.sequential:
x = out
else:
a = torch.sigmoid(self.blend[f])
x = a * out + (1 - a) * x
if self.counter < 1 and "decoder" in self.debug:
shapes = {k: v.shape for k, v in enc.items()}
print(f"Step {self.counter}: Decoder output shape: {x.shape}, enc keys: {list(enc.keys())}, order: {order}: shapes: {shapes}")
self.counter += 1
x = self.ln_dec(x)
return x @ torch.transpose(self.token.weight.to(dtype), 0, 1).float()
class Echo(nn.Module):
def __init__(self, param: Dimensions):
super().__init__()
self.param = param
self.encoder = AudioEncoder(
mels=param.mels,
ctx=param.aud_ctx,
dims=param.aud_dims,
head=param.aud_head,
layer=param.aud_idx,
act=param.act,
debug=param.debug,
features=param.features,
)
self.decoder = TextDecoder(
vocab=param.vocab,
ctx=param.text_ctx,
dims=param.text_dims,
head=param.text_head,
layer=param.text_idx,
cross_attn=param.cross_attn,
debug=param.debug,
features=param.features,
)
def forward(self,
decoder_input_ids=None,
labels=None,
waveform: Optional[torch.Tensor]=None,
input_ids=None,
spectrogram: torch.Tensor=None,
pitch: Optional[torch.Tensor]=None,
f0: Optional[torch.Tensor]=None,
f0d: Optional[torch.Tensor]=None,
envelope: Optional[torch.Tensor]=None,
phase: Optional[torch.Tensor]=None,
) -> Dict[str, torch.Tensor]:
encoder_inputs = {}
if spectrogram is not None:
encoder_inputs["spectrogram"] = spectrogram
if waveform is not None:
encoder_inputs["waveform"] = waveform
if pitch is not None:
encoder_inputs["pitch"] = pitch
if envelope is not None:
encoder_inputs["envelope"] = envelope
if phase is not None:
encoder_inputs["phase"] = phase
if f0 is not None:
encoder_inputs["f0"] = f0
encoder_outputs = self.encoder(encoder_inputs)
logits = self.decoder(input_ids, encoder_outputs)
loss = None
if labels is not None:
loss = F.cross_entropy(
logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=0)
return {"logits": logits, "loss": loss}
@property
def device(self):
return next(self.parameters()).device
@property
def dtype(self):
return next(self.parameters()).dtype
def _init_weights(self, module):
std = 0.02
self.init_counts = {
"Linear": 0, "Conv1d": 0, "LayerNorm": 0, "RMSNorm": 0,
"Conv2d": 0, "SEBlock": 0, "TextDecoder": 0, "AudioEncoder": 0,
"Residual": 0, "MultiheadA": 0, "MultiheadB - Cross Attention": 0,
"MultiheadC": 0, "MultiheadD": 0, "FEncoder": 0,
"WEncoder": 0, "PEncoder": 0}
for name, module in self.named_modules():
if isinstance(module, RMSNorm):
nn.init.ones_(module.weight)
self.init_counts["RMSNorm"] += 1
elif isinstance(module, nn.Linear):
if module.weight is not None:
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Linear"] += 1
elif isinstance(module, Conv1d):
nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv1d"] += 1
elif isinstance(module, Conv2d):
nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv2d"] += 1
elif isinstance(module, MultiheadA):
self.init_counts["MultiheadA"] += 1
elif isinstance(module, TextDecoder):
self.init_counts["TextDecoder"] += 1
elif isinstance(module, AudioEncoder):
self.init_counts["AudioEncoder"] += 1
elif isinstance(module, Residual):
self.init_counts["Residual"] += 1
def init_weights(self):
print("Initializing model weights...")
self.apply(self._init_weights)
print("Initialization summary:")
for module_type, count in self.init_counts.items():
if count > 0:
print(f"{module_type}: {count}")
metric = evaluate.load(path="wer")
@dataclass
class DataCollator:
tokenizer: Any
def __call__(self, features: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]:
all_keys = set()
for f in features:
all_keys.update(f.keys())
batch = {}
pad_token_id = getattr(self.tokenizer, 'pad_token_id', 0)
bos_token_id = getattr(self.tokenizer, 'bos_token_id', 1)
eos_token_id = getattr(self.tokenizer, 'eos_token_id', 2)
for key in all_keys:
if key == "label":
labels_list = [f["label"] for f in features]
max_len = max(len(l) for l in labels_list)
all_ids, all_labels = [], []
for label in labels_list:
label_list = label.tolist() if isinstance(label, torch.Tensor) else label
decoder_input = [bos_token_id] + label_list
label_eos = label_list + [eos_token_id]
input_len = max_len + 1 - len(decoder_input)
label_len = max_len + 1 - len(label_eos)
padded_input = decoder_input + [pad_token_id] * input_len
padded_labels = label_eos + [pad_token_id] * label_len
all_ids.append(padded_input)
all_labels.append(padded_labels)
batch["input_ids"] = torch.tensor(all_ids, dtype=torch.long)
batch["labels"] = torch.tensor(all_labels, dtype=torch.long)
elif key in ["spectrogram", "waveform", "pitch", "f0", "env", "phase"]:
items = [f[key] for f in features if key in f]
max_len = max(item.shape[-1] for item in items)
padded = []
for item in items:
pad_width = max_len - item.shape[-1]
if pad_width > 0:
pad_item = F.pad(item, (0, pad_width), mode='constant', value=pad_token_id)
else:
pad_item = item
padded.append(pad_item)
batch[key] = torch.stack(padded)
if key == "spectrogram":
batch["spectrogram"] = batch[key]
return batch
def hilbert_transform(x):
N = x.shape[-1]
xf = torch.fft.rfft(x)
h = torch.zeros(N // 2 + 1, device=x.device, dtype=x.dtype)
if N % 2 == 0:
h[0] = h[N//2] = 1
h[1:N//2] = 2
else:
h[0] = 1
h[1:(N+1)//2] = 2
return torch.fft.irfft(xf * h, n=N)
def analytic_signal(x):
return x + 1j * hilbert_transform(x)
def hilbert_transform_2d(x, dim=-1):
N = x.shape[dim]
if dim == -1 or dim == len(x.shape) - 1:
xf = torch.fft.rfft(x)
else:
xf = torch.fft.rfft(x, dim=dim)
h_shape = [1] * len(x.shape)
h_shape[dim] = N // 2 + 1
h = torch.zeros(h_shape, device=x.device, dtype=x.dtype)
if dim == -1 or dim == len(x.shape) - 1:
if N % 2 == 0:
h[..., 0] = h[..., -1] = 1
h[..., 1:-1] = 2
else:
h[..., 0] = 1
h[..., 1:] = 2
else:
pass
return torch.fft.irfft(xf * h, n=N, dim=dim)
def hilbert_transform_true_2d(x):
xf = torch.fft.rfft2(x)
h1, h2 = torch.meshgrid(
torch.fft.rfftfreq(x.shape[-2]) * 2 - 1,
torch.fft.rfftfreq(x.shape[-1]) * 2 - 1,
indexing='ij')
h = -1j / (math.pi * (h1 + 1j*h2))
h[0, 0] = 0
return torch.fft.irfft2(xf * h.to(x.device))
def process_spectrogram_with_hilbert(spec):
analytic = spec + 1j * hilbert_transform(spec)
envelope = torch.abs(analytic)
phase = torch.angle(analytic)
return envelope, phase
def load_wave(wave_data, sample_rate):
if isinstance(wave_data, str):
waveform, sr = torchaudio.load(uri=wave_data, normalize=False)
elif isinstance(wave_data, dict):
waveform = torch.tensor(data=wave_data["array"]).float()
sr = wave_data["sampling_rate"]
else:
raise TypeError("Invalid wave_data format.")
if waveform.dim() == 1:
waveform = waveform.unsqueeze(0)
if sr != sample_rate:
original_length = waveform.shape[1]
target_length = int(original_length * (sample_rate / sr))
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=sample_rate)
waveform = resampler(waveform)
return waveform.flatten()
def extract_features(batch, tokenizer, spectrogram, waveforms, pitch, frequency=False,
hop_length=128, fmin=0, fmax=8000, n_mels=128, n_fft=1024, sampling_rate=16000,
pad_mode="constant", center=True, power=2.0, window_fn=torch.hann_window, mel_scale="htk",
norm=None, normalized=False, downsamples=False, period=False, hilbert=False):
audio = batch["audio"]
sampling_rate = audio["sampling_rate"]
sr = audio["sampling_rate"]
wav = load_wave(wave_data=audio, sample_rate=sr)
if spectrogram:
transform = torchaudio.transforms.MelSpectrogram(
f_max=fmax,
f_min=fmin,
n_mels=n_mels,
sample_rate=sr,
n_fft=n_fft,
hop_length=hop_length,
norm=norm,
normalized=normalized,
power=power,
center=center,
mel_scale=mel_scale,
window_fn=window_fn,
pad_mode=pad_mode)
mel_spectrogram = transform(wav)
log_mel = torch.clamp(mel_spectrogram, min=1e-10).log10()
log_mel = torch.maximum(log_mel, log_mel.max() - 8.0)
spec = (log_mel + 4.0) / 4.0
spec = torch.tensor(spec)
batch["spectrogram"] = spec
if hilbert:
envelope_list = []
phase_list = []
for ch_idx in range(spec.shape[0]):
envelope, phase = process_spectrogram_with_hilbert(spec[ch_idx])
envelope_list.append(envelope)
phase_list.append(phase)
batch["envelope"] = torch.stack(envelope_list)
batch["phase"] = torch.stack(phase_list)
wav_1d = wav.unsqueeze(0)
if waveforms:
batch["waveform"] = wav_1d
if pitch:
wav_np = wav.numpy().astype(np.float64)
f0, t = pw.dio(wav_np, sampling_rate,
frame_period=hop_length/sampling_rate*1000)
f0 = pw.stonemask(wav_np, f0, t, sampling_rate)
f0 = torch.from_numpy(f0)
batch["pitch"] = f0.unsqueeze(0)
if frequency:
wav_np = wav.numpy().astype(np.float64)
f0, t = pw.dio(wav_np, sampling_rate, frame_period=hop_length/sampling_rate*1000)
f0 = pw.stonemask(wav_np, f0, t, sampling_rate)
f0 = torch.from_numpy(f0)
batch["f0"] = f0
if spectrogram and waveforms and pitch:
spec_mean = batch["spectrogram"].mean()
spec_std = batch["spectrogram"].std() + 1e-6
batch["spectrogram"] = (batch["spectrogram"] - spec_mean) / spec_std
wav_mean = batch["waveform"].mean()
wav_std = batch["waveform"].std() + 1e-6
batch["waveform"] = (batch["waveform"] - wav_mean) / wav_std
if batch["pitch"].max() > 1.0:
pitch_min = 50.0
pitch_max = 500.0
batch["pitch"] = (batch["pitch"] - pitch_min) / (pitch_max - pitch_min)
batch["label"] = tokenizer.encode(batch["transcription"], add_special_tokens=False)
return batch
def compute_metrics(pred, compute_result: bool = True, print_pred: bool = False, num_samples: int = 0, tokenizer = None, model = None):
pred_ids = pred.predictions
label_ids = pred.label_ids
if isinstance(pred_ids, tuple):
pred_ids = pred_ids[0]
else:
pred_ids = pred_ids
if hasattr(pred_ids, "ndim") and pred_ids.ndim == 3:
if not isinstance(pred_ids, torch.Tensor):
pred_ids = torch.tensor(pred_ids)
pred_ids = pred_ids.argmax(dim=-1)
pred_ids = pred_ids.tolist()
label_ids = label_ids.tolist()
pad_token_id = tokenizer.pad_token_id if hasattr(tokenizer, 'pad_token_id') else 0
label_ids = [[pad_token_id if token == -100 else token for token in seq] for seq in label_ids]
if print_pred:
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=False)
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=False)
for i in range(min(num_samples, len(pred_str))):
print(f"Preds: {pred_str[i]}")
print(f"Label: {label_str[i]}")
print(f"Preds: {pred_ids[i]}")
print(f"Label: {label_ids[i]}")
print("--------------------------------")
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
wer = 100 * metric.compute(predictions=pred_str, references=label_str)
if model is None:
global global_model
if 'global_model' in globals():
model = global_model
if model is not None:
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) / 1_000_000
if trainable_params > 0:
efficiency_score = (100 - wer) / trainable_params
else:
print("Warning: Zero trainable parameters detected")
efficiency_score = 0.0
else:
print("Warning: Model not available for parameter counting")
trainable_params = 0.0
efficiency_score = 0.0
if hasattr(wer, "item"):
wer = wer.item()
metrics = {
"wer": float(wer),
"trainable_params_M": float(trainable_params),
"efficiency_score": float(efficiency_score),
}
return metrics
logger = logging.getLogger(__name__)
def create_model(param: Dimensions) -> Echo:
model = Echo(param).to('cuda')
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
total_params = sum(p.numel() for p in model.parameters())
logger.info(f"Trainable parameters: {trainable_params:,}")
logger.info(f"Total parameters: {total_params:,}")
print(f"Trainable parameters: {trainable_params:,}")
print(f"Total parameters: {total_params:,}")
return model
def setup_tokenizer(token: str, local_tokenizer_path: str = "./"):
from tokenizers import Tokenizer
tokenizer = Tokenizer.from_file(f"{local_tokenizer_path}/tokenizer.json")
orig_encode = tokenizer.encode
def enc(text, add_special_tokens=True):
ids = orig_encode(text).ids
if not add_special_tokens:
sp_ids = [tokenizer.token_to_id(t) for t in ["<PAD>", "<BOS>", "<EOS>"]]
ids = [id for id in ids if id not in sp_ids]
return ids
def bdec(ids_list, skip_special_tokens=True):
results = []
for ids in ids_list:
if skip_special_tokens:
ids = [id for id in ids if id not in [0, 1, 2]]
results.append(tokenizer.decode(ids))
return results
def save_pretrained(save_dir):
os.makedirs(save_dir, exist_ok=True)
tokenizer.save(f"{save_dir}/tokenizer.json")
tokenizer.encode = enc
tokenizer.batch_decode = bdec
tokenizer.save_pretrained = save_pretrained
tokenizer.pad_token_id = 0
tokenizer.bos_token_id = 1
tokenizer.eos_token_id = 2
return tokenizer
def prepare_datasets(tokenizer, token: str, sanity_check: bool = False, dataset_config: Optional[Dict] = None) -> Tuple[any, any]:
if dataset_config is None:
dataset_config = {
"spectrogram": True,
"waveforms": True,
"pitch": True,
"frequency": True,
"downsamples": True,
"hop_length": 128,
"fmin": 50,
"fmax": 2000,
"n_mels": 128,
"n_fft": 1024,
"sampling_rate": 16000,
}
dataset = load_dataset(
"google/fleurs",
"en_us",
token=token,
trust_remote_code=True,
streaming=False)
dataset = dataset.cast_column(column="audio", feature=Audio(sampling_rate=16000)).select_columns(["audio", "transcription"])
if sanity_check:
dataset = dataset["test"].take(10)
dataset = dataset.select_columns(["audio", "transcription"])
prepare_fn = partial(extract_features, tokenizer=tokenizer, **dataset_config)
dataset = dataset.map(function=prepare_fn, remove_columns=["audio", "transcription"]).with_format(type="torch")
train_dataset = dataset
test_dataset = dataset
else:
def filter_func(x):
return (0 < len(x["transcription"]) < 512 and
len(x["audio"]["array"]) > 0 and
len(x["audio"]["array"]) < 1500 * 160)
dataset = dataset.filter(filter_func)
prepare_fn = partial(extract_features, tokenizer=tokenizer, **dataset_config)
train_dataset = dataset["train"]
test_dataset = dataset["test"]
train_dataset = train_dataset.map(
function=prepare_fn,
remove_columns=["audio", "transcription"]
).with_format(type="torch")
test_dataset = test_dataset.map(
function=prepare_fn,
remove_columns=["audio", "transcription"]
).with_format(type="torch")
return train_dataset, test_dataset
def get_training_args(
log_dir: str,
batch_eval_metrics: bool = False,
max_steps: int = 10,
save_steps: int = 1000,
eval_steps: int = 1,
warmup_steps: int = 0,
num_train_epochs: int = 1,
logging_steps: int = 1,
eval_on_start: bool = False,
) -> Seq2SeqTrainingArguments:
return Seq2SeqTrainingArguments(
output_dir=log_dir,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
gradient_accumulation_steps=1,
eval_accumulation_steps=1,
eval_strategy="steps",
save_strategy="no",
max_steps=max_steps,
save_steps=save_steps,
eval_steps=eval_steps,
warmup_steps=warmup_steps,
num_train_epochs=num_train_epochs,
logging_steps=logging_steps,
logging_dir=log_dir,
logging_strategy="steps",
report_to=["tensorboard"],
push_to_hub=False,
disable_tqdm=False,
save_total_limit=1,
label_names=["labels"],
save_safetensors=False,
eval_on_start=eval_on_start,
batch_eval_metrics=batch_eval_metrics,
)
def main():
token = ""
log_dir = os.path.join('./output/logs', datetime.now().strftime(format='%m-%d_%H_%M_%S'))
os.makedirs(name=log_dir, exist_ok=True)
tokenizer = setup_tokenizer(token)
def sanity(sanity: bool):
if sanity:
training_args = get_training_args(
log_dir,
batch_eval_metrics = False,
max_steps = 10,
save_steps = 0,
eval_steps = 1,
warmup_steps = 0,
logging_steps = 1,
eval_on_start = True,
)
else:
training_args = get_training_args(
log_dir,
batch_eval_metrics = False,
max_steps = 1000,
save_steps = 1000,
eval_steps = 100,
warmup_steps = 100,
logging_steps = 10,
eval_on_start = False,
)
return training_args
param = Dimensions(
mels=128,
aud_ctx=1500,
aud_head=4,
aud_dims=512,
aud_idx=4,
vocab=40000,
text_ctx=512,
text_head=4,
text_dims=512,
text_idx=4,
act="swish",
debug={},
cross_attn=True,
features = ["spectrogram"],
)
sanity_check = False
training_args = sanity(sanity_check)
dataset_config = {
"spectrogram": True,
"waveforms": False,
"pitch": False,
"downsamples": False,
"frequency": True,
"hilbert": False,
"hop_length": 128,
"fmin": 150,
"fmax": 2000,
"n_mels": 128,
"n_fft": 1024,
"sampling_rate": 16000,
"pad_mode": "constant",
"center": True,
"power": 1.0,
"window_fn": torch.hann_window,
"mel_scale": "htk",
"norm": None,
"normalized": False}
model = create_model(param)
global global_model
global_model = model
metrics_fn = partial(compute_metrics, print_pred=False, num_samples=1,
tokenizer=tokenizer, model=model)
print(f"{'Sanity check' if sanity_check else 'Training'} mode")
train_dataset, test_dataset = prepare_datasets(
tokenizer=tokenizer,
token=token,
sanity_check=sanity_check,
dataset_config=dataset_config)
optimizer = MaxFactor(model.parameters(), lr=0.025, beta2_decay=-0.8, eps=(1e-10, 1e-7), d=1.0,
weight_decay=0.025, gamma=0.99, max=False)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=training_args.max_steps,
eta_min=1e-7,
last_epoch=-1,
)
trainer = Seq2SeqTrainer(
args=training_args,
model=model,
train_dataset=train_dataset,
eval_dataset=test_dataset,
data_collator=DataCollator(tokenizer=tokenizer),
compute_metrics=metrics_fn,
optimizers=(optimizer, scheduler)
)
model.init_weights()
trainer.train()
if __name__ == "__main__":
main()
|