File size: 13,101 Bytes
977f1b4
 
 
 
 
 
1ffdc4a
 
 
 
977f1b4
1ffdc4a
977f1b4
dcd3aa9
 
 
 
 
 
 
977f1b4
1ffdc4a
977f1b4
 
1ffdc4a
dcd3aa9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ffdc4a
dcd3aa9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ffdc4a
 
0d51758
dcd3aa9
 
 
 
 
 
 
 
 
1ffdc4a
 
 
 
dcd3aa9
977f1b4
 
 
1ffdc4a
 
977f1b4
 
 
 
 
 
 
 
 
 
 
1ffdc4a
977f1b4
 
 
 
 
1ffdc4a
977f1b4
 
1ffdc4a
 
 
dcd3aa9
1ffdc4a
 
 
 
 
 
 
dcd3aa9
1ffdc4a
 
977f1b4
1ffdc4a
 
 
 
 
 
 
 
 
 
 
977f1b4
 
 
 
 
1ffdc4a
977f1b4
 
 
 
 
 
 
 
 
1ffdc4a
977f1b4
1ffdc4a
977f1b4
 
 
1ffdc4a
 
977f1b4
1ffdc4a
977f1b4
dcd3aa9
 
977f1b4
 
1ffdc4a
977f1b4
 
 
 
 
 
 
 
1ffdc4a
 
 
977f1b4
 
 
 
 
 
 
 
 
 
 
1ffdc4a
977f1b4
1ffdc4a
 
977f1b4
1ffdc4a
977f1b4
1ffdc4a
977f1b4
1ffdc4a
977f1b4
 
 
 
 
 
 
1ffdc4a
977f1b4
 
1ffdc4a
977f1b4
 
 
 
 
 
 
 
1ffdc4a
977f1b4
 
 
 
1ffdc4a
 
 
 
977f1b4
 
 
 
 
 
1ffdc4a
977f1b4
 
1ffdc4a
977f1b4
 
 
 
 
 
 
 
 
1ffdc4a
977f1b4
 
 
1ffdc4a
 
977f1b4
1ffdc4a
 
 
977f1b4
 
 
 
 
 
 
1ffdc4a
 
 
 
 
977f1b4
 
 
1ffdc4a
2cbdf26
977f1b4
1ffdc4a
977f1b4
 
 
 
 
1ffdc4a
 
977f1b4
1ffdc4a
977f1b4
 
 
1ffdc4a
977f1b4
 
 
 
1ffdc4a
977f1b4
1ffdc4a
977f1b4
 
 
1ffdc4a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# Description: This file contains the handcrafted solution for the task of wireframe reconstruction 

import io
from collections import defaultdict
from typing import Tuple, List

import cv2
import numpy as np
from PIL import Image as PImage
from hoho.color_mappings import gestalt_color_mapping
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
from scipy.spatial.distance import cdist

apex_color = gestalt_color_mapping["apex"]
eave_end_point = gestalt_color_mapping["eave_end_point"]
flashing_end_point = gestalt_color_mapping["flashing_end_point"]

apex_color, eave_end_point, flashing_end_point = [np.array(i) for i in [apex_color, eave_end_point, flashing_end_point]]
unclassified = np.array([(215, 62, 138)])
line_classes = ['eave', 'ridge', 'rake', 'valley']


def empty_solution():
    '''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
    return np.zeros((2, 3)), [(0, 1)]


def undesired_objects(image):
    image = image.astype('uint8')
    nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=8)
    sizes = stats[:, -1]
    max_label = 1
    max_size = sizes[1]
    for i in range(2, nb_components):
        if sizes[i] > max_size:
            max_label = i
            max_size = sizes[i]

    img2 = np.zeros(output.shape)
    img2[output == max_label] = 1
    return img2


def clean_image(image_gestalt) -> np.ndarray:
    # clears image in from of unclassified and disconected components
    image_gestalt = np.array(image_gestalt)
    unclassified_mask = cv2.inRange(image_gestalt, unclassified + 0.0, unclassified + 0.8)
    unclassified_mask = cv2.bitwise_not(unclassified_mask)
    mask = undesired_objects(unclassified_mask).astype(np.uint8)
    mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, np.ones((11, 11), np.uint8), iterations=11)

    image_gestalt[:, :, 0] *= mask
    image_gestalt[:, :, 1] *= mask
    image_gestalt[:, :, 2] *= mask
    return image_gestalt


def get_vertices(image_gestalt, *, color_range=4., dialations=3, erosions=1, kernel_size=13):
    apex_mask = cv2.inRange(image_gestalt, apex_color - color_range, apex_color + color_range)
    eave_end_point_mask = cv2.inRange(image_gestalt, eave_end_point - color_range, eave_end_point + color_range)
    flashing_end_point_mask = cv2.inRange(image_gestalt, flashing_end_point - color_range,
                                          flashing_end_point + color_range)
    eave_end_point_mask = cv2.bitwise_or(eave_end_point_mask, flashing_end_point_mask)

    kernel = np.ones((kernel_size, kernel_size), np.uint8)

    apex_mask = cv2.morphologyEx(apex_mask, cv2.MORPH_DILATE, kernel, iterations=dialations)
    apex_mask = cv2.morphologyEx(apex_mask, cv2.MORPH_ERODE, kernel, iterations=erosions)

    eave_end_point_mask = cv2.morphologyEx(eave_end_point_mask, cv2.MORPH_DILATE, kernel, iterations=dialations)
    eave_end_point_mask = cv2.morphologyEx(eave_end_point_mask, cv2.MORPH_ERODE, kernel, iterations=erosions)

    *_, apex_centroids = cv2.connectedComponentsWithStats(apex_mask, connectivity=8, stats=cv2.CV_32S)
    *_, other_centroids = cv2.connectedComponentsWithStats(eave_end_point_mask, connectivity=8, stats=cv2.CV_32S)

    return apex_centroids[1:], other_centroids[1:], apex_mask, eave_end_point_mask


def convert_entry_to_human_readable(entry):
    out = {}
    already_good = ['__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces',
                    'face_semantics', 'K', 'R', 't']
    for k, v in entry.items():
        if k in already_good:
            out[k] = v
            continue
        if k == 'points3d':
            out[k] = read_points3D_binary(fid=io.BytesIO(v))
        if k == 'cameras':
            out[k] = read_cameras_binary(fid=io.BytesIO(v))
        if k == 'images':
            out[k] = read_images_binary(fid=io.BytesIO(v))
        if k in ['ade20k', 'gestalt']:
            out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
        if k == 'depthcm':
            out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
    return out


def get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th=50.0):
    '''Get the vertices and edges from the gestalt segmentation mask of the house'''
    # Apex
    color_range = 4.
    connections = []

    gest_seg_np = clean_image(gest_seg_np)
    apex_centroids, eave_end_point_centroids, apex_mask, eave_end_point_mask = get_vertices(gest_seg_np)
    apex_mask = cv2.morphologyEx(apex_mask,
                                 cv2.MORPH_DILATE, np.ones((11, 11)), iterations=4)
    eave_end_point_mask = cv2.morphologyEx(eave_end_point_mask,
                                           cv2.MORPH_DILATE, np.ones((5, 5)), iterations=4)
    vertex_mask = cv2.bitwise_not(cv2.bitwise_or(apex_mask, eave_end_point_mask))

    apex_pts = np.concatenate([apex_centroids, eave_end_point_centroids])

    for edge_class in ['eave', 'ridge', 'rake', 'valley', 'flashing']:
        edge_color = np.array(gestalt_color_mapping[edge_class])

        mask = cv2.inRange(gest_seg_np,
                           edge_color - color_range,
                           edge_color + color_range)

        if np.any(mask):  # does not really make sense to dilate something if it is empty
            mask = cv2.bitwise_and(mask, vertex_mask)

            mask = cv2.morphologyEx(mask,
                                    cv2.MORPH_DILATE, np.ones((11, 11)), iterations=3)
            line_img = np.zeros_like(gest_seg_np)
            output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
            (numLabels, labels, stats, centroids) = output
            stats, centroids = stats[1:], centroids[1:]
            edges = []
            for i in range(1, numLabels):
                y, x = np.where(labels == i)
                xleft_idx = np.argmin(x)
                x_left = x[xleft_idx]
                y_left = y[xleft_idx]
                xright_idx = np.argmax(x)
                x_right = x[xright_idx]
                y_right = y[xright_idx]
                edges.append((x_left, y_left, x_right, y_right))
                cv2.line(line_img, (x_left, y_left), (x_right, y_right), (255, 255, 255), 2)
            edges = np.array(edges)
            if (len(apex_pts) < 2) or len(edges) < 1:
                continue
            pts_to_edges_dist = np.minimum(cdist(apex_pts, edges[:, :2]), cdist(apex_pts, edges[:, 2:]))
            connectivity_mask = pts_to_edges_dist <= edge_th
            edge_connects = connectivity_mask.sum(axis=0)
            for edge_idx, edgesum in enumerate(edge_connects):
                if edgesum >= 2:
                    connected_verts = np.where(connectivity_mask[:, edge_idx])[0]
                    for a_i, a in enumerate(connected_verts):
                        for b in connected_verts[a_i + 1:]:
                            connections.append((a, b))
    vertices = [{"xy": v, "type": "apex"} for v in apex_centroids]
    vertices += [{"xy": v, "type": "eave_end_point"} for v in eave_end_point_centroids]
    return vertices, connections


def get_uv_depth(vertices, depth):
    '''Get the depth of the vertices from the depth image'''
    uv = []
    for v in vertices:
        uv.append(v['xy'])
    uv = np.array(uv)
    uv_int = uv.astype(np.int32)
    H, W = depth.shape[:2]
    uv_int[:, 0] = np.clip(uv_int[:, 0], 0, W - 1)
    uv_int[:, 1] = np.clip(uv_int[:, 1], 0, H - 1)
    vertex_depth = depth[(uv_int[:, 1], uv_int[:, 0])]
    return uv, vertex_depth


def merge_vertices_3d(vert_edge_per_image, th=0.1):
    '''Merge vertices that are close to each other in 3D space and are of same types'''
    all_3d_vertices = []
    connections_3d = []
    all_indexes = []
    cur_start = 0
    types = []
    for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items():
        types += [int(v['type'] == 'apex') for v in vertices]
        all_3d_vertices.append(vertices_3d)
        connections_3d += [(x + cur_start, y + cur_start) for (x, y) in connections]
        cur_start += len(vertices_3d)
    all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
    # print (connections_3d)
    distmat = cdist(all_3d_vertices, all_3d_vertices)
    types = np.array(types).reshape(-1, 1)
    same_types = cdist(types, types)
    mask_to_merge = (distmat <= th) & (same_types == 0)
    new_vertices = []
    new_connections = []
    to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge])))
    to_merge_final = defaultdict(list)
    for i in range(len(all_3d_vertices)):
        for j in to_merge:
            if i in j:
                to_merge_final[i] += j
    for k, v in to_merge_final.items():
        to_merge_final[k] = list(set(v))
    already_there = set()
    merged = []
    for k, v in to_merge_final.items():
        if k in already_there:
            continue
        merged.append(v)
        for vv in v:
            already_there.add(vv)
    old_idx_to_new = {}
    count = 0
    for idxs in merged:
        new_vertices.append(all_3d_vertices[idxs].mean(axis=0))
        for idx in idxs:
            old_idx_to_new[idx] = count
        count += 1
    # print (connections_3d)
    new_vertices = np.array(new_vertices)
    # print (connections_3d)
    for conn in connections_3d:
        new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]]))
        if new_con[0] == new_con[1]:
            continue
        if new_con not in new_connections:
            new_connections.append(new_con)
    # print (f'{len(new_vertices)} left after merging {len(all_3d_vertices)} with {th=}')
    return new_vertices, new_connections


def prune_not_connected(all_3d_vertices, connections_3d):
    '''Prune vertices that are not connected to any other vertex'''
    connected = defaultdict(list)
    for c in connections_3d:
        connected[c[0]].append(c)
        connected[c[1]].append(c)
    new_indexes = {}
    new_verts = []
    connected_out = []
    for k, v in connected.items():
        vert = all_3d_vertices[k]
        if tuple(vert) not in new_verts:
            new_verts.append(tuple(vert))
            new_indexes[k] = len(new_verts) - 1
    for k, v in connected.items():
        for vv in v:
            connected_out.append((new_indexes[vv[0]], new_indexes[vv[1]]))
    connected_out = list(set(connected_out))

    return np.array(new_verts), connected_out


def predict(entry, visualize=False) -> Tuple[np.ndarray, List[int]]:
    good_entry = convert_entry_to_human_readable(entry)
    vert_edge_per_image = {}
    for i, (gest, depth, K, R, t) in enumerate(zip(good_entry['gestalt'],
                                                   good_entry['depthcm'],
                                                   good_entry['K'],
                                                   good_entry['R'],
                                                   good_entry['t']
                                                   )):
        gest_seg = gest.resize(depth.size)
        gest_seg_np = np.array(gest_seg).astype(np.uint8)
        # Metric3D
        depth_np = np.array(depth) / 2.5  # 2.5 is the scale estimation coefficient
        vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th=90.)
        if (len(vertices) < 2) or (len(connections) < 1):
            print(f'Not enough vertices or connections in image {i}')
            vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3))
            continue
        uv, depth_vert = get_uv_depth(vertices, depth_np)
        # Normalize the uv to the camera intrinsics
        xy_local = np.ones((len(uv), 3))
        xy_local[:, 0] = (uv[:, 0] - K[0, 2]) / K[0, 0]
        xy_local[:, 1] = (uv[:, 1] - K[1, 2]) / K[1, 1]
        # Get the 3D vertices
        vertices_3d_local = depth_vert[..., None] * (xy_local / np.linalg.norm(xy_local, axis=1)[..., None])
        world_to_cam = np.eye(4)
        world_to_cam[:3, :3] = R
        world_to_cam[:3, 3] = t.reshape(-1)
        cam_to_world = np.linalg.inv(world_to_cam)
        vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world)
        vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)
        vert_edge_per_image[i] = vertices, connections, vertices_3d
    all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, 3.0)
    all_3d_vertices_clean, connections_3d_clean = prune_not_connected(all_3d_vertices, connections_3d)
    if (len(all_3d_vertices_clean) < 2) or len(connections_3d_clean) < 1:
        print(f'Not enough vertices or connections in the 3D vertices')
        return (good_entry['__key__'], *empty_solution())
    if visualize:
        from hoho.viz3d import plot_estimate_and_gt
        plot_estimate_and_gt(all_3d_vertices_clean,
                             connections_3d_clean,
                             good_entry['wf_vertices'],
                             good_entry['wf_edges'])
    return good_entry['__key__'], all_3d_vertices_clean, connections_3d_clean