Fine-tuned multilingual BERT for multi-label emotion classification task.

Model was trained on lv_go_emotions dataset. This dataset is Latvian translation of GoEmotions dataset. Google Translate was used to generate the machine translation.

Original 26 emotions were mapped to 6 base emotions as per Dr. Ekman theory.

Labels predicted by classifier:

0: anger
1: disgust
2: fear
3: joy
4: sadness
5: surprise
6: neutral

Label mapping from 27 emotions from GoEmotion to 6 base emotions as per Dr. Ekman theory:

GoEmotion Ekman
admiration joy
amusement joy
anger anger
annoyance anger
approval joy
caring joy
confusion surprise
curiosity surprise
desire joy
disappointment sadness
disapproval anger
disgust disgust
embarrassment sadness
excitement joy
fear fear
gratitude joy
grief sadness
joy joy
love joy
nervousness fear
optimism joy
pride joy
realization surprise
relief joy
remorse sadness
sadness sadness
surprise surprise
neutral neutral

Seed used for random number generator is 42:

def set_seed(seed=42):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)

Training parameters:

max_length: null
batch_size: 64
shuffle: True
num_workers: 8
pin_memory: False
drop_last: False
optimizer: adam
lr: 0.00001
weight_decay: 0

problem_type: multi_label_classification

num_epochs: 4

Evaluation results on test split of lv_go_emotions

Precision Recall F1-Score AUC-ROC Support
anger 0.58 0.36 0.45 0.83 726
disgust 0.88 0.12 0.21 0.90 123
fear 0.75 0.48 0.58 0.93 98
joy 0.82 0.76 0.79 0.90 2104
sadness 0.69 0.46 0.55 0.88 379
surprise 0.61 0.51 0.55 0.87 677
neutral 0.65 0.62 0.64 0.83 1787
micro avg 0.71 0.60 0.65 0.92 5894
macro avg 0.71 0.47 0.54 0.88 5894
weighted avg 0.71 0.60 0.64 0.87 5894
samples avg 0.63 0.62 0.62 nan 5894
Downloads last month
4
Safetensors
Model size
178M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Dataset used to train SkyWater21/mbert-lv-go-emotions-ekman