|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
model-index: |
|
- name: org_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# org_model |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9527 |
|
- F1 Micro: 0.8011 |
|
- F1 Macro: 0.7779 |
|
- F1 Weighted: 0.8108 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 400 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | F1 Weighted | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:--------:|:-----------:| |
|
| 1.5515 | 0.0064 | 25 | 1.3111 | 0.7801 | 0.7504 | 0.7890 | |
|
| 1.2983 | 0.0127 | 50 | 1.2188 | 0.7748 | 0.7572 | 0.7891 | |
|
| 1.2193 | 0.0191 | 75 | 1.1271 | 0.7855 | 0.7583 | 0.7937 | |
|
| 1.1269 | 0.0255 | 100 | 1.0890 | 0.7952 | 0.7639 | 0.8015 | |
|
| 1.0734 | 0.0318 | 125 | 1.0594 | 0.7949 | 0.7635 | 0.8008 | |
|
| 1.0384 | 0.0382 | 150 | 1.0389 | 0.7857 | 0.7614 | 0.7937 | |
|
| 1.0168 | 0.0446 | 175 | 1.0126 | 0.8045 | 0.7794 | 0.8133 | |
|
| 1.0043 | 0.0510 | 200 | 0.9998 | 0.8034 | 0.7786 | 0.8123 | |
|
| 1.0406 | 0.0573 | 225 | 0.9874 | 0.8074 | 0.7803 | 0.8153 | |
|
| 1.0488 | 0.0637 | 250 | 0.9838 | 0.7922 | 0.7664 | 0.8000 | |
|
| 0.9894 | 0.0701 | 275 | 0.9673 | 0.8034 | 0.7780 | 0.8122 | |
|
| 0.9969 | 0.0764 | 300 | 0.9629 | 0.7992 | 0.7720 | 0.8069 | |
|
| 1.0047 | 0.0828 | 325 | 0.9655 | 0.8000 | 0.7689 | 0.8058 | |
|
| 0.9812 | 0.0892 | 350 | 0.9623 | 0.8049 | 0.7839 | 0.8159 | |
|
| 0.9681 | 0.0955 | 375 | 0.9551 | 0.8016 | 0.7794 | 0.8118 | |
|
| 1.0594 | 0.1019 | 400 | 0.9527 | 0.8011 | 0.7779 | 0.8108 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.2 |
|
- Pytorch 2.3.0+cu118 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |