|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
library_name: transformers |
|
--- |
|
|
|
# Compressed Meta Llama-3-8B-Instruct with Palu |
|
|
|
## Overview |
|
This repository contains a compressed version of the Meta Llama-3-8B-Instruct model, utilizing the Palu framework for KV-Cache compression. Palu reduces the hidden dimensions of the KV-Cache through low-rank decomposition, significantly reducing the model's memory footprint while maintaining or enhancing performance. |
|
|
|
## Key Features |
|
- **Model**: Meta Llama-3-8B-Instruct |
|
- **Compression Framework**: Palu |
|
- **Compression Rate**: Up to 91.25% memory reduction |
|
- **Accuracy**: Maintained or improved perplexity compared to the base model |
|
|
|
## Installation |
|
|
|
### Clone the Repository |
|
Ensure you have Git and Conda installed on your system. |
|
```bash |
|
git clone --recurse-submodules https://github.com/shadowpa0327/Palu.git |
|
cd Palu |
|
``` |
|
|
|
### Set Up the Environment |
|
Create and activate a Conda environment. |
|
```bash |
|
conda create -n Palu python=3.10 |
|
conda activate Palu |
|
pip install -r requirements.txt |
|
``` |
|
|
|
### Install Third-Party Libraries |
|
```bash |
|
pip install -e 3rdparty/lm-evaluation-harness |
|
pip install -e 3rdparty/fast-hadamard-transform |
|
``` |
|
|
|
## Usage |
|
|
|
### Compress the Model |
|
To compress Meta Llama-3-8B-Instruct using Palu's low-rank decomposition, use the following command: |
|
|
|
```bash |
|
python compress.py \ |
|
--model_id="meta-llama/Llama-3-8b-instruct" \ |
|
--calib_dataset wikitext2 \ |
|
--param_ratio_target 0.7 \ |
|
--search_method fisher_uniform \ |
|
--head_group_size 4 \ |
|
--dump_huggingface_model \ |
|
--use_cache |
|
``` |
|
|
|
The compressed model will be saved in the `Meta-Llama-3-8b-instruct_ratio-0.7_gs-4-fisher_uniform` directory in Hugging Face format. |
|
|
|
### Evaluate the Compressed Model |
|
|
|
#### Perplexity |
|
To evaluate the perplexity on the `wikitext2` dataset with sequence length 2048, run: |
|
|
|
```bash |
|
python run_ppl_eval.py \ |
|
--model_name_or_path /Path/To/Palu/Model \ |
|
--datasets wikitext2 \ |
|
--seqlen 2048 |
|
``` |
|
|
|
To evaluate with 3-bit low-rank aware quantization, use: |
|
```bash |
|
python run_ppl_eval.py \ |
|
--model_name_or_path /Path/To/Palu/Model \ |
|
--datasets wikitext2 \ |
|
--seqlen 4096 \ |
|
--lt_bits 3 \ |
|
--lt_hadamard |
|
``` |
|
|
|
#### Zero-shot Evaluation |
|
For zero-shot evaluations, use the following command: |
|
```bash |
|
CUDA_VISIBLE_DEVICES=0 python run_lm_eval.py \ |
|
--model_name_or_path "/Path/To/Palu/Model" \ |
|
--tasks "openbookqa,hellaswag,piqa,arc_easy,arc_challenge,winogrande" |
|
``` |
|
|
|
#### Long-Bench Evaluation |
|
Evaluate the compressed model on long-bench tasks: |
|
```bash |
|
CUDA_VISIBLE_DEVICES=0 python run_long_bench.py \ |
|
--model_name_or_path /Path/To/Palu/Model |
|
``` |
|
|
|
## Latency Evaluation |
|
|
|
### Attention Module |
|
Evaluate the latency of the Palu-compressed attention module: |
|
```bash |
|
CUDA_VISIBLE_DEVICES=0 python run_latency_attention.py \ |
|
--rank_k 1024 --rank_v 3072 --group_size 4 \ |
|
--prompt_len 65536 --palu |
|
``` |
|
|
|
### Reconstruction Kernel |
|
Evaluate the latency of the reconstruction kernel: |
|
```bash |
|
CUDA_VISIBLE_DEVICES=0 python run_latency_kernel.py \ |
|
--total_rank 1024 --group_size 4 |
|
``` |
|
|
|
## Conclusion |
|
This compressed version of Meta Llama-3-8B-Instruct, powered by Palu, is optimized for memory efficiency without compromising performance. Whether you're working with large datasets or deploying models in memory-constrained environments, this setup is designed to provide robust results. |
|
|