Files changed (1) hide show
  1. README.md +21 -0
README.md CHANGED
@@ -13,6 +13,27 @@ DCLM-1B is a 1.4 billion parameter language model trained on the DCLM-Baseline d
13
 
14
  The instruction tuned version of this model is available here: https://huggingface.co/TRI-ML/DCLM-1B-IT
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  ## Evaluation
17
 
18
  We evaluate DCLM-1B using the [llm-foundry](https://github.com/mosaicml/llm-foundry) eval suite, and compare to recently released small models on key benchmarks.
 
13
 
14
  The instruction tuned version of this model is available here: https://huggingface.co/TRI-ML/DCLM-1B-IT
15
 
16
+ ## Quickstart
17
+ First install open_lm
18
+ ```
19
+ pip install git+https://github.com/mlfoundations/open_lm.git
20
+ ```
21
+
22
+ Then you can load the model using HF's Auto classes as follows:
23
+ ```python
24
+ from open_lm.hf import *
25
+ from transformers import AutoTokenizer, AutoModelForCausalLM
26
+ tokenizer = AutoTokenizer.from_pretrained("TRI-ML/DCLM-1B")
27
+ model = AutoModelForCausalLM.from_pretrained("TRI-ML/DCLM-1B")
28
+
29
+ inputs = tokenizer(["Machine learning is"], return_tensors="pt")
30
+ gen_kwargs = {"max_new_tokens": 50, "top_p": 0.8, "temperature": 0.8, "do_sample": True, "repetition_penalty": 1.1}
31
+ output = model.generate(inputs['input_ids'], **gen_kwargs)
32
+ output = tokenizer.decode(output[0].tolist(), skip_special_tokens=True)
33
+ print(output)
34
+ ```
35
+
36
+
37
  ## Evaluation
38
 
39
  We evaluate DCLM-1B using the [llm-foundry](https://github.com/mosaicml/llm-foundry) eval suite, and compare to recently released small models on key benchmarks.