metadata
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:25103
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
PR4061978 OOL Action (TOC sur l'chantillon TANKF_SSS6_TOC prlev le 15
janvier 2024 par EMG
sentences:
- Vedolizumab Production Halted to Alarm Activation in Chromatography
- Out-of-Limits Result for Tank F Sample TOC on January 18,
- >-
On 13Dec2022, during batch record review, Analyst EID 50320381)
discovered that Fraction paste recovery below range for lot LR2249467 .
Fraction IV-1 paste recovery was 46.39 g/kg of CPP which was below the
range for 25% recovered lots (48.11 to 61.04 g/kg of CPP) per
FORM-050414 "Fr +III 25% Supernatant to Fr 1 PPT & Fr IV1 @ 25%
supernatant" (Version 43.0, Effective Date: 01Nov2022). This deviation
occurred in Building 5 Fractionation.
- source_sentence: 'Instrument: Tolerable Error Limits for Balance R2105'
sentences:
- >-
Metrology Out of tolerance of pipette Biohit Proline 100-200L of QC Lab,
tag LEAE02416
- >-
LI PR4102547 -OoL Action mold) bio pour l'chantillon In Process SD du
lot BE12E034Z prlev le 02 FEV 2024 -PL4
- of range during the Fix/Display check on the LEWIT43108 in room R2105
- source_sentence: >-
Lors de la rception de l'chantillon P104-DS10-LAL (lot Glassia BE22B017Z)
au laboratoire QC de Takeda le Juin, ZONDACQ Antoine (QC Logistic Analyst,
constat que le tube utilis pour le prlvement destin au testing LAL
(SOP-048687 n'tait pas tube valid . En effet, selon la procdure SOP-054100
"LE20LA02006B - Echantillonnage, identification, stockage et distribution
des chantillons Glassia (Ligne 5)") ce sont des tubes "Falcon ref 3300446"
qui doivent tre utiliss pour les prlvements destins au testing LAL
(SOP-048687 . Or, l'chantillon impliqu par la prsente Dviation a t prlev
dans un tube "Corning ref 430052" non adapt au prlvement d'chantillon LAL
L'chantillon concern a t prlev le 08 Juin 2021 par KVDW (= date
d'occurrence). Une deviation (event) est donc initie afin d'investiguer
cette erreur de prlvement.
sentences:
- >-
Lors de la completion de rendement dans le MBR du lot BE22B022Z (DS
Glassia) le 02-Sep-2021, Cline Brunin (CBI, technicienne spcialiste EBM)
a observ une valeur de rendement en alpha-1-antitrypsine (AAT) hors
limites pour l'chantillon DS5 (P102 - Aprs filtre presse) Valeur
calcule: 107.1% Limite infrieure: 84.0% Limite suprieure 107.0%
- >-
Out-of-Tolerance (OOT Calibration of HL-3170 Process Liquid UV Sensor at
Los Angeles Manufacturing Facility
- >-
Use of a non-validated tube for the collection of sample P104-DS10-LAL
of lot BE22B017Z
- source_sentence: NCR-000660 - 158-029 - Out of Tolerance
sentences:
- >-
Etat du serveur Esxi dans VMware de Lessines aprs un problme
d'adaptateur rse
- >-
Torque Wrench Asset ID #, owning department Purification, in room 1025,
was NCR #for failure of calibration on (see Deviation 3066031 Attachment
1 NCR-000660). Previous Calibration was on 28Oct2021 with a calibration
result of Pass . Review of Non-conformance History, including the
deviation, resulted in 1 NCR (s) for this equipment from 4 events
reviewed.
- >-
LI PR 2928690 - OOL Alerte (cfu escalade en action sur l'chantillon WFI
prlev le 08/AUG/2022
- source_sentence: >-
Emergency Door in Staircase Room 1044 for Post-Viral Found Not Completely
Closed
sentences:
- >-
On 02Jul2023, Manufacturing Supervisor (EID 50251544) was informed that
Post-Viral Exit Door in Grade C Staircase leading to uncontrolled space,
was found opened . Additionally, on 04Jul2023, Manufacturing Supervisor
(50251544) was that the same door in Room 1044 was found opened . Per
TOOL-216083, "Global Job Aid, Takeda Glossary (Reference Only)"
(Version, Effective Date: 20Jun2022, a deviation is a departure from an
established process, system, procedure,, regulatory filing, Health
Authority requirement, specification, tolerance, trend, or other
conformance requirement that may have GXP impact . This deviation
occurred in Building 5 Fractionation.
- Wrong autorization of packaging file for lot 20I25B437D
- >-
Deviation in DeltaV Recording During Wash Step of LA23G014 Elution
Process
SentenceTransformer
This model aims at encoding text information from deviations Titles and/or Deviation Description (Event) for various Takeda site.
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Emergency Door in Staircase Room 1044 for Post-Viral Found Not Completely Closed',
'On 02Jul2023, Manufacturing Supervisor (EID 50251544) was informed that Post-Viral Exit Door in Grade C Staircase leading to uncontrolled space, was found opened . Additionally, on 04Jul2023, Manufacturing Supervisor (50251544) was that the same door in Room 1044 was found opened . Per TOOL-216083, "Global Job Aid, Takeda Glossary (Reference Only)" (Version, Effective Date: 20Jun2022, a deviation is a departure from an established process, system, procedure,, regulatory filing, Health Authority requirement, specification, tolerance, trend, or other conformance requirement that may have GXP impact . This deviation occurred in Building 5 Fractionation.',
'Deviation in DeltaV Recording During Wash Step of LA23G014 Elution Process',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 25,103 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 4 tokens
- mean: 66.28 tokens
- max: 512 tokens
- min: 5 tokens
- mean: 72.37 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 MFGR-0008591 Step 15.1/15.2 no
On 01NOV2022 at 2120 in room 1044, Manufacturing Associate ME1 discovered prompt for Connection to VP-5020 not appear at step 15.1 of MFGR-0008591 v1.0, VED-D, Capto Adhere Blank Chromatography Material 6254681, 12376356, Process Order 221191021 . Process Engineer NS was contacted and verified with Automation Engineer EDS that recipe does require prompt Connect to VP-5020 (step 15.1), Connect 5020 5011 (Step and Ready to Load into XX-XX (step 15.2). Quality CY and Quality Assurance Lead SSH were contacted gave approval to . On 02NOV2022 in room 1044, Manufacturing Associate ARF discovered prompt Connect Collection to VP-5231 did not appear at step 15.1 MFGR-0008592 v1.0, VED-D, Nuvia HR-S Blank Chromatography Material 6254682, 12376361, Process Order 221191023 . Manufacturing Supervisor D1A and Manufacturing Specialist JN were and instructed ARF to the prompt Connect Collection to VP-5231 and proceed with processing It was prompt to Load into XV-XX at step 15.2 also did not appear JN gave approval to proceed with processing.
BE22D002Z - Ligne de transfert TP2110-TP2140 en statut sale expir
Ce dimanche 15/01/2023 18h50, Guillaume Deschuyteneer technicien Senior de production Glassia) a cr un work order EBM pour effectuer le CIP de dbut de de transfert line 2110-2140 (WO EBM: CIPG010048 pour la production du lot BE22D002Z . EBM alors spcifi Guillaume que le statut sanitaire de la line 2110-2140 tait en "sale expir". Guillaume a alors sa Cline Brunin (Contrematre de production Glassia) pour l'en informer.
Donne manquante initiale Glose l'chantillons SMA aprs capsulage du lot LE13X075 - LI PR215117
Initial Missing Data: agar observed on SMA after CAPPING batch LE13X075 - LI PR2151179
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 50multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 50max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.3187 | 500 | 1.0372 |
0.6373 | 1000 | 0.3844 |
0.6667 | 1046 | - |
0.9560 | 1500 | 0.2836 |
1.0 | 1569 | - |
1.2747 | 2000 | 0.2401 |
1.3333 | 2092 | - |
1.5934 | 2500 | 0.1983 |
1.9120 | 3000 | 0.1513 |
2.0 | 3138 | - |
2.2307 | 3500 | 0.1278 |
2.5494 | 4000 | 0.1001 |
2.6667 | 4184 | - |
2.8681 | 4500 | 0.0801 |
3.0 | 4707 | - |
3.1867 | 5000 | 0.0707 |
3.3333 | 5230 | - |
3.5054 | 5500 | 0.0479 |
3.8241 | 6000 | 0.0425 |
4.0 | 6276 | - |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.45.0.dev0
- PyTorch: 2.4.1
- Accelerate: 0.26.1
- Datasets: 2.16.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}